Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The period of oscillation of an object in an ideal spring-and-mass system is \(0.50 \mathrm{s}\) and the amplitude is \(5.0 \mathrm{cm} .\) What is the speed at the equilibrium point?

Short Answer

Expert verified
Answer: The speed of the object at the equilibrium point is 0.6285 m/s.

Step by step solution

01

Write down the given information

We are given: - Period of oscillation, \(T = 0.50 \;\text{s}\) - Amplitude of oscillation, \(A = 5.0 \;\text{cm} = 0.050 \;\text{m}\) (converting to meters)
02

Calculate the angular frequency

We can find the angular frequency (\(\omega\)) using the period \(T\) with the formula: \(\omega = \frac{2\pi}{T}\) Substituting the given values, we get: \(\omega = \frac{2\pi}{0.50 \;\text{s}}\) Now, calculate \(\omega\): \(\omega = 12.57 \;\text{rad/s}\)
03

Calculate the speed at the equilibrium point

At the equilibrium point, the displacement of the object is zero (\(x = 0\)), which means that the speed will be maximum. The formula for the speed of an object in a spring-mass system is given by: \(v = A\omega\sin(\omega t + \phi)\) At the equilibrium point, the phase angle is zero (\(\phi = 0\)) and the time (\(t\)) at which the object is at the equilibrium point is given by a multiple of half of the period (\(t=n\frac{T}{2} ,\) n is an integer). Since \(\sin(\omega t + \phi)\) will be maximum (equal to 1) at the equilibrium point, the speed of the object will be: \(v = A\omega\) Substitute the given values: \(v = (0.050 \;\text{m})(12.57 \;\text{rad/s})\) Now, calculate the speed: \(v = 0.6285 \;\text{m/s}\)
04

Write down the final answer

The speed of the object at the equilibrium point in this ideal spring-and-mass system is \(0.6285\;\text{m/s}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A steel piano wire \(\left(Y=2.0 \times 10^{11} \mathrm{Pa}\right)\) has a diameter of \(0.80 \mathrm{mm} .\) At one end it is wrapped around a tuning pin of diameter \(8.0 \mathrm{mm}\). The length of the wire (not including the wire wrapped around the tuning pin) is \(66 \mathrm{cm}\). Initially, the tension in the wire is \(381 \mathrm{N}\). To tune the wire, the tension must be increased to \(402 \mathrm{N}\). Through what angle must the tuning pin be turned?
An object of mass \(306 \mathrm{g}\) is attached to the base of a spring, with spring constant \(25 \mathrm{N} / \mathrm{m},\) that is hanging from the ceiling. A pen is attached to the back of the object, so that it can write on a paper placed behind the mass-spring system. Ignore friction. (a) Describe the pattern traced on the paper if the object is held at the point where the spring is relaxed and then released at \(t=0 .\) (b) The experiment is repeated, but now the paper moves to the left at constant speed as the pen writes on it. Sketch the pattern traced on the paper. Imagine that the paper is long enough that it doesn't run out for several oscillations.
It takes a flea \(1.0 \times 10^{-3}\) s to reach a peak speed of $0.74 \mathrm{m} / \mathrm{s}$ (a) If the mass of the flea is \(0.45 \times 10^{-6} \mathrm{kg},\) what is the average power required? (b) Insect muscle has a maximum output of 60 W/kg. If \(20 \%\) of the flea's weight is muscle, can the muscle provide the power needed? (c) The flea has a resilin pad at the base of the hind leg that compresses when the flea bends its leg to jump. If we assume the pad is a cube with a side of \(6.0 \times 10^{-5} \mathrm{m},\) and the pad compresses fully, what is the energy stored in the compression of the pads of the two hind legs? The Young's modulus for resilin is $1.7 \times 10^{6} \mathrm{N} / \mathrm{m}^{2} .$ (d) Does this provide enough power for the jump?
A \(230.0-\mathrm{g}\) object on a spring oscillates left to right on a frictionless surface with a frequency of \(2.00 \mathrm{Hz}\). Its position as a function of time is given by \(x=(8.00 \mathrm{cm})\) sin \(\omega t\) (a) Sketch a graph of the elastic potential energy as a function of time. (b) The object's velocity is given by \(v_{x}=\omega(8.00 \mathrm{cm}) \cos \omega t .\) Graph the system's kinetic energy as a function of time. (c) Graph the sum of the kinetic energy and the potential energy as a function of time. (d) Describe qualitatively how your answers would change if the surface weren't frictionless.
(a) Sketch a graph of \(x(t)=A \sin \omega t\) (the position of an object in SHM that is at the equilibrium point at \(t=0\) ). (b) By analyzing the slope of the graph of \(x(t),\) sketch a graph of $v_{x}(t) .\( Is \)v_{x}(t)$ a sine or cosine function? (c) By analyzing the slope of the graph of \(v_{x}(t),\) sketch \(a_{x}(t)\) (d) Verify that \(v_{x}(t)\) is \(\frac{1}{4}\) cycle ahead of \(x(t)\) and that \(a_{x}(t)\) is \(\frac{1}{4}\) cycle ahead of \(v_{x}(t) .\) (W) tutorial: sinusoids)
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free