Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: A classmate studies Figures 12 and 17, then claims that when a spot appears, its location simultaneously establishes the particle’s -component of momentum, according to the angle from center, and its position (i.e., at the spot). How do you answer this claim?

Short Answer

Expert verified

Answer:

We are unable to concurrently measure location and momentum because the detecting procedure changes the momentum of the particle (uncertainty principle).

Step by step solution

01

Uncertainty relation

Mathematically, the uncertainty relation can be stated asΔxΔph2 .

02

Explanation 

The Heisenberg uncertainty principle is a basic tenet of nature and is not only an issue of experimental scope. You have just altered the particle's momentum as a result of the detecting procedure as the particle position on the detector is determined.

Therefore, it is impossible to estimate the location without affecting the particle's momentum. We always have a limited uncertainty associated with the position measurement since it doesn't provide us with the precise location of the particle.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A beam of particles, each of mass m and (nonrelativistic) speed v, strikes a barrier in which there are two narrow slits and beyond which is a bunk of detectors. With slit 1 alone open, 100 particles are detected per second at all detectors. Now slit 2 is also opened. An interference pattern is noted in which the first minimum. 36 particles per second. Occurs at an angle of 30ofrom the initial direction of motion of the beam.

(a) How far apart are the slits?

(b) How many particles would be detected ( at all detectors) per second with slit 2 alone open?

(c) There are multiple answers to part (b). For each, how many particles would be detected at the center detector with both slits open?

Question: Analyzing crystal diffraction is intimately tied to the various different geometries in which the atoms can be arranged in three dimensions and upon their differing effectiveness in reflecting waves. To grasp some of the considerations without too much trouble, consider the simple square arrangement of identical atoms shown in the figure. In diagram (a), waves are incident at angle with the crystal face and are detected at the same angle with the atomic plane. In diagram (b), the crystal has been rotated 450 counterclockwise, and waves are now incident upon planes comprising different sets of atoms. If in the orientation of diagram (b), constructive interference is noted only at an angle, θ=40°at what angle(s) will constructive interference be found in the orientation of diagram (a)? (Note: The spacing between atoms is the same in each diagram.)

A beam of electrons of 25 eVkinetic energy is directed at a single slip of 2.0 μm width, then detected at a screen 4m beyond the slit. How far from a point directly in the line of the beam is the first location where no electrons are ever detected?

An electron moves along the x-axiswith a well-defined momentum of5×10-25kg.ms. Write an expression describing the matter wave associated with this electron. Include numerical values where appropriate.

To how small a region must an electron be confined for borderline relativistic speeds say0.05to become reasonably likely? On the basis of this, would you expect relativistic effects to be prominent for hydrogen's electron, which has an orbit radius near10-10m? For a lead atom "inner-shell" electron of orbit radius10-12m?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free