Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: When we refer to a “bound” particle, we usually mean one for which there is no probability of finding it outside some finite confines. Could a bound particle be perfectly dead stationary, meaning a well-defined velocity of zero? Why or why not?

Short Answer

Expert verified

Answer:

No, according to the uncertainty relation, if p=0then xhas to be infinity, however, this can’t occur with a particle in a box that has definite uncertainty in the position.

Step by step solution

01

Uncertainty relation

Mathematically, the uncertainty relation can be stated as ΔxΔph2.

02

Explanation

The uncertainty connection does not permit this, though. The positional uncertainty of a particle contained in a box is known, but since the particle is stationary meansp=0 , the positional uncertainty is unknown indefinitely x=.

As a result, being stationary and being enclosed in a box cannot happen at the same time.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Starting with the assumption that a general wave function may be treated as an algebraic sum of sinusoidal functions of various wave numbers, explain concisely why there is an uncertainty principle.

Question: If a particle’s position uncertainty is zero, what can be said of its momentum uncertainty? If a particle’s position uncertainty is infinite, what can be said of its momentum uncertainty?

A mosquito of mass 0.15mgis found to be flying at a speed of 50cm/swithin an uncertainty of 0.5mm/s.(a) How precisely may its position be known? (b) Does this inherent uncertainty present any hindrance to the application of classical mechanics?

Question: Analyzing crystal diffraction is intimately tied to the various different geometries in which the atoms can be arranged in three dimensions and upon their differing effectiveness in reflecting waves. To grasp some of the considerations without too much trouble, consider the simple square arrangement of identical atoms shown in the figure. In diagram (a), waves are incident at angle with the crystal face and are detected at the same angle with the atomic plane. In diagram (b), the crystal has been rotated 450 counterclockwise, and waves are now incident upon planes comprising different sets of atoms. If in the orientation of diagram (b), constructive interference is noted only at an angle, θ=40°at what angle(s) will constructive interference be found in the orientation of diagram (a)? (Note: The spacing between atoms is the same in each diagram.)

The setup depicted in Figure4.6is used in a diffraction experiment using X-rays of0.26 nmwavelength. Constructive interference is noticed at angles of23.0oand,51.4obut none between. What is the spacingdof atomic planes?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free