Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

An electron in an atom can "jump down" from a higher energy level to a lower one, then to a lower one still. The energy the atom thus loses at each jump goes to a photon. Typically, an electron might occupy a level for a nanosecond. What uncertainty in the electron's energy does this imply?

Short Answer

Expert verified

The uncertainty in the electron’s energy is E5.3×10-23J.

Step by step solution

01

Given data

Time is given as: t=10-9s.

02

Uncertainty principle

The principle states that the position and the velocity of an object cannot be measured with 100 % accuracy at the same time.

x·ph2

x= Uncertainty in the position.

p = Uncertainty of momentum.

h = Planck's constant. = 1.05x10-34 J.s

03

Electron’s energy

The Energy and Time Uncertainty Principle,

t·Eh2

Substituting values, and we get:

role="math" localid="1658386938701" E1.05×10-342×1×10-9E5.3×10-26J

Therefore, the total energy is E5.3×10-26J.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A beam of particles, each of mass m and (nonrelativistic) speed v, strikes a barrier in which there are two narrow slits and beyond which is a bunk of detectors. With slit 1 alone open, 100 particles are detected per second at all detectors. Now slit 2 is also opened. An interference pattern is noted in which the first minimum. 36 particles per second. Occurs at an angle of 30ofrom the initial direction of motion of the beam.

(a) How far apart are the slits?

(b) How many particles would be detected ( at all detectors) per second with slit 2 alone open?

(c) There are multiple answers to part (b). For each, how many particles would be detected at the center detector with both slits open?

Question: Analyzing crystal diffraction is intimately tied to the various different geometries in which the atoms can be arranged in three dimensions and upon their differing effectiveness in reflecting waves. To grasp some of the considerations without too much trouble, consider the simple square arrangement of identical atoms shown in the figure. In diagram (a), waves are incident at angle with the crystal face and are detected at the same angle with the atomic plane. In diagram (b), the crystal has been rotated 450 counterclockwise, and waves are now incident upon planes comprising different sets of atoms. If in the orientation of diagram (b), constructive interference is noted only at an angle, θ=40°at what angle(s) will constructive interference be found in the orientation of diagram (a)? (Note: The spacing between atoms is the same in each diagram.)

Question: If a particle’s position uncertainty is zero, what can be said of its momentum uncertainty? If a particle’s position uncertainty is infinite, what can be said of its momentum uncertainty?

A free particle is represented by the plane wave functionψ(x,t)=Aexp[i(1.58×1012x-7.91×1016t)]where SIunits are understood. What are the particle’s momentum, Kinetic energy, and mass? (Note: In nonrelativistic quantum mechanics, we ignore mass/internal energy, so the frequency is related to kinetic energy alone.)

A particle is “thermal” if it is in equilibrium with its surroundings – its average kinetic energy would be32kBT. Show that the wavelength of a thermal particle is given by

λ=h3mkBT

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free