Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

One of the cornerstones of quantum mechanics is that bound particles cannot be stationary-even at zero absolute temperature! A "bound" particle is one that is confined in some finite region of space. as is an atom in a solid. There is a nonzero lower limit on the kinetic energy of such a particle. Suppose minimum kinetic energy of width L. Obtain an approximate formula for its minimum kinetic energy.

Short Answer

Expert verified

The minimum kinetic energy formula isK·E.h28mL2

Step by step solution

01

Uncertainty principle.

That the position and the velocity of an object cannot both be measured exactly, at the same time, even in theory.

Δxph4π

Δxuncertainty in position.

Δpuncertainty of momentum.

h Planck's constant.

02

Kinetic energy.

ΔxΔp=ΔxΔ(mv)h2

localid="1659187305509" Δv=h2mΔx

Here Δx=L

Δv=h2mL

The kinetic energyK.E.=12m(Δv)2

Substitute the value,

localid="1659187247106" K.E.≥h28mL2

Therefore, the minimum Kinetic Energy formula of the width is localid="1659187237799" K.E≥.h28mL2

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An electron in an atom can "jump down" from a higher energy level to a lower one, then to a lower one still. The energy the atom thus loses at each jump goes to a photon. Typically, an electron might occupy a level for a nanosecond. What uncertainty in the electron's energy does this imply?

According to the energy-time uncertainty principle, the lifetimelof a state and the uncertaintyEin its energy are invertible proportional. Hydrogen's red spectral line is the result of an electron making a transition "downward" frum a quantum state whose lifetime is about10-8s.

(a) What inherent uncertainty in the energy of the emitted person does this imply? (Note: Unfortunately. we might use the symbol for the energy difference-i.e., the energy of the photon-but here it means the uncertainly in that energy difference.)

(b) To what range in wavelength s does this correspond? (As noted in Exercise 2.57. the uncertainty principle is one contributor to the broadening of spectral lines.)

(c) Obtain a general formula relating λtot.

Generally speaking, why is the wave nature of matter so counterintuitive?

How slow would an electron have to be traveling for its wavelength to be at least1 μm?

(a) What is the range of possible wavelengths for a neutron corresponding to a range of speeds from “thermal” at300K(see Exercise) to0.01c.(b) Repeat part (a), but with reference to an electron.(c) For this range of speeds, what range of dimensions D would reveal the wave nature of a neutron? Of an electron?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free