Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Section 4.3, we claim that in analyzing electromagnetic waves, we could handle the fieldsandtogether with complex numbers. Show that if we define an "electromagnetic field"GE+icB, then the two of Maxwell's equations that linkEandB.(4-6c) and(4-6d) , become just one:

Gdl=ictGdA

Electromagnetic waves would have to obey this complex equation. Does this change of approach make EandB/or complex? (Remember how a complex number is defined.)

Short Answer

Expert verified

Start with Maxwell's equations and utilize the identity G=E+icBto get to the given equation; the electric and magnetic fields don't have to be complicated.

Step by step solution

01

Significance of Maxwell’s equations

Maxwell's equations formulate a relationship between the electric and magnetic fields, that how they are correlated and complementary to each other.

02

Step 2:Maxwell’s equation to relate  Eand  B.

We should be able to merge equations (4-6c)and (4-6d)into a single equation for both Eand B if we start with equations (4-6c)and (4-6d)and use the supplied identity .

G=E+icB

Edl=tBdA……………….. (1)

Bdl=1c2tEdA……………….. (2)

Equation(2) is multiplied byic, and equations (1) and (2) are added together.

Edl+icBdl=tBdA+ictEdA

(E+icB)dl=ict(icB+E)dA

Since, G=E+icB

Gdl=ictGdA

As a result, we were able to unify the two equations for electric and magnetic fields into a single equation that includes both in a single variable termed as G. The magnetic and electric fields, on the other hand, haven't been restricted in any way during the derivation, thus they don't have to be complicated.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Electrons are accelerated through a 20 V potential difference producing a monoenergetic beam. This is directed at a double-slit apparatus of 0.010 mm slit separation. A bank of electron detectors is 10 m beyond the double slit. With slit 1 alone open, 100 electrons per second are detected at all detectors. With slit 2 alone open, 900 electrons per second are detected at all detectors. Now both slits are open.

(a) The first minimum in the electron count occurs at detector X. How far is it from the center of the interference pattern?

(b) How many electrons per second will be detected at the center detector?

(c) How many electrons per second will be detected at detector X?

Nonrelativistically, the energyEof a free massive particle is just kinetic energy, and its momentumis. of course,mv. Combining these with fundamental relationships (4-4) and (4-5), derive a formula relating (a) particle momentumto matter-wave frequency fand (b) particle energyEto the wavelengthλof a matter wave.

Question: Atoms in a crystal form atomic planes at many different angles with respect to the surface. The accompanying figure shows the behaviors of representative incident and scattered waves in the Davisson-Germer experiment. A beam of electrons accelerated through 54 V is directed normally at a nickel surface, and strong reflection is detected only at an angle ϕof 500.Using the Bragg law, show that this implies a spacing D of nickel atoms on the surface in agreement with the known value of 0.22 nm.

Determine the Compton wavelength of the electron, defined to be the wavelength it would have if its momentum weremec.

Equation (4-21) expresses a function ψ(x)as a sum of plane waves, each with a coefficient A(k). Equation (4-22) finds the coefficients from the given functionψ(x) . The equations aren't independent statements; in fact, one is the inverse of the other. Equation (4-22) givesA(k)when ψ(x)is known, and (4-21) does the reverse. Example 4.7calculates A(k)from a specificψ(x). Show that when this A(k) is inserted into (4-21) , the original ψ(x)is returned. Use the Euler formula and the symmetry properties of odd and even functions to simplify your work.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free