Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A beam of electrons of 25 eVkinetic energy is directed at a single slip of 2.0 μm width, then detected at a screen 4m beyond the slit. How far from a point directly in the line of the beam is the first location where no electrons are ever detected?

Short Answer

Expert verified

The line of the beam is detected aty=0.25mm

Step by step solution

01

 Step 1: Given information

The potential difference for the electron beam is25 eV

The slit's width=2 μm

The space between the screen and the slit=4 m

02

Concept Introduction

The wavelength of any moving charged particle is given by the,

λ=h2mqV…………………..(1)

Where m, q, and V are the mass, charge, and applied potential difference.

03

Calculation of the wavelength

Substitute the given information in equation (1) to obtain the wavelength such that,

λ=6.63×1034Js2×(9.1×1031kg)×(1.6×1019C)×(25V)=2.46×1010m

04

 Another formula substituting.

mλ=ωsinθ12λ=ω×yD12×2.46×10-10m=2.0×106m×y4my=0.25mm

Therefore, the result is y=0.25 mm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Equation (4-21) expresses a function ψ(x)as a sum of plane waves, each with a coefficient A(k). Equation (4-22) finds the coefficients from the given functionψ(x) . The equations aren't independent statements; in fact, one is the inverse of the other. Equation (4-22) givesA(k)when ψ(x)is known, and (4-21) does the reverse. Example 4.7calculates A(k)from a specificψ(x). Show that when this A(k) is inserted into (4-21) , the original ψ(x)is returned. Use the Euler formula and the symmetry properties of odd and even functions to simplify your work.

Question: An electron beam strikes a barrier with a single narrow slit, and the electron flux number of electrons per unit time per unit area detected at the very center of the resulting intensity pattern is . Next, two more identical slits are opened, equidistant on either side of the first and equally “illuminated” by the beam. What will be the flux at the very center now? Does your answer imply that more than three times as many electrons pass through three slits than through one? Why or why not?

Generally speaking, why is the wave nature of matter so counterintuitive?

What is the wavelength of a neutron of kinetic energy 1MeV? Of kinetic energy20eV? (The difference is important for the fission of uranium, as a neutron will be more easily absorbed when its wavelength is very large compared with the dimensions of the wavelength behaves more like a diffuse wave than like a localized particle)

Question: Analyzing crystal diffraction is intimately tied to the various different geometries in which the atoms can be arranged in three dimensions and upon their differing effectiveness in reflecting waves. To grasp some of the considerations without too much trouble, consider the simple square arrangement of identical atoms shown in the figure. In diagram (a), waves are incident at angle with the crystal face and are detected at the same angle with the atomic plane. In diagram (b), the crystal has been rotated 450 counterclockwise, and waves are now incident upon planes comprising different sets of atoms. If in the orientation of diagram (b), constructive interference is noted only at an angle, θ=40°at what angle(s) will constructive interference be found in the orientation of diagram (a)? (Note: The spacing between atoms is the same in each diagram.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free