Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the hydrogen atom, the electron’s orbit, not necessarily circular, extends to a distance of a about an angstrom (=0.1 nm)from the proton. If it is to move about as a compact classical particle in the region where it is confined, the electron’s wavelength had better always be much smaller than an angstrom. Here we investigate how large might be the electron’s wavelength. If orbiting as a particle, its speed at could be no faster than that for circular orbit at that radius. Why? Find the corresponding wavelength and compare it to . Can the atom be treated classically?

Short Answer

Expert verified

The electron is not a classical particle and cannot be regarded as such.

Step by step solution

01

Given.

No longer working with circular orbits if the electrons' speed around the nucleus reaches one angstrom. Electrons must maintain the same radius; otherwise, their velocity will be dependent on their position, and will not be able to link a particular wavelength with this classical particle. Now, assuming the electron is a classical particle orbiting the nucleus in a circular orbit, may apply Newton's second law to a circular motion, with the electric force as the dominating force.

FE=mv2rke2r2=mev2rv=ke2mer

02

Substituting formula.

v=(9.0×109Nm2C2)×(1.6×10-19 C)2(9.1×10-31kg)×(1.0×10-10m)=1.6×106m/s

λelectron=hpe=hmevλelectron=6.63×10-34 Js(9.1×10-31kg)×(1.6×106m/s)λelectron=4.55×10-10m

dimension in the problem to be treated as a classical particle, however, this is not the case here.

We can't treat the electron as a classical particle because its wavelength(0.455nm) is bigger than its orbital radius(0.1nm).

λelectron=4.55×10-10m

The electron is not a classical particle and cannot be regarded as such.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Nonrelativistically, the energyEof a free massive particle is just kinetic energy, and its momentumis. of course,mv. Combining these with fundamental relationships (4-4) and (4-5), derive a formula relating (a) particle momentumto matter-wave frequency fand (b) particle energyEto the wavelengthλof a matter wave.

Question: A classmate studies Figures 12 and 17, then claims that when a spot appears, its location simultaneously establishes the particle’s -component of momentum, according to the angle from center, and its position (i.e., at the spot). How do you answer this claim?

An electron in an atom can "jump down" from a higher energy level to a lower one, then to a lower one still. The energy the atom thus loses at each jump goes to a photon. Typically, an electron might occupy a level for a nanosecond. What uncertainty in the electron's energy does this imply?

Equation (4-21) expresses a function ψ(x)as a sum of plane waves, each with a coefficient A(k). Equation (4-22) finds the coefficients from the given functionψ(x) . The equations aren't independent statements; in fact, one is the inverse of the other. Equation (4-22) givesA(k)when ψ(x)is known, and (4-21) does the reverse. Example 4.7calculates A(k)from a specificψ(x). Show that when this A(k) is inserted into (4-21) , the original ψ(x)is returned. Use the Euler formula and the symmetry properties of odd and even functions to simplify your work.

All other things being equal, which would be more likely to exhibit its wave nature—a proton or an electron—and why? By making something unequal, how could you “compensate,” so as to make one as wavelike as the other?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free