Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A ball is thrown straight up at 25ms-1. Someone asks “Ignoring air resistance. What is the probability of the ball tunneling to a height of1000m?” Explain why this is not an example of tunneling as discussed in this chapter, even if the ball were replaced with a small fundamental particle. (The fact that the potential energy varies with position is not the whole answer-passing through nonrectangular barriers is still tunnelirl8.)

Short Answer

Expert verified

This is not an example of tunneling.

Step by step solution

01

Definition of quantum tunneling

The quantum phenomenon, in which a particle can penetrate a barrier and pass through it even though it is forbidden classically, is known as quantum tunneling.

02

Explanation and conclusion

In tunneling, we consider that the particle’s potential energy drops down to its original value after it has crossed the barrier and reached to the other side.

In the case given above, the potential energy of the ball increases by virtue of its height (PE=mgh). And when it reaches the highest point, i.e., the point where the kinetic energy is zero and potential energy is maximum, everything beyond this point is classically forbidden. But the ball cannot go beyond and hence this case cannot be considered under quantum tunneling.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Reflection and Transmission probabilities can be obtained from equations (6-12). The first step is substituting -fork'. (a) Why? (b) Make the substitutions and then use definitions of k and α to obtain equation (6-16).

A method for finding tunneling probability for a barrier that is "wide" but whose height varies in an arbitrary way is the so-called WKB approximation.

T=exp[2122m(U(x)E)dx]

Here U(x) is the height of the arbitrary potential energy barrier.Whicha particle first penetrates at x=0 and finally exits at x=L. Although not entirely rigorous, show that this can be obtained by treating the barrier as a series of rectangular slices, each of width dx (though each is still a "wide" barrier), and by assuming that the probability of tunneling through the total is the product of the probabilities for each slice.

Exercise 39 gives the condition for resonant tunneling through two barriers separated by a space of width 2 s, expressed in terms of a factor βgiven in Exercise 30. (a) Suppose that in some system of units, k and α are both2π. Find two values of 2s that give resonant tunneling. What are these distances in terms of wavelengths ofψ? Is the term resonant tunneling appropriate?(b) Show that the condition has no solution if s = 0 and explain why this must be so. (c) If a classical particle wants to surmount a barrier without gaining energy, is adding a second barrier a good solution?

Show that the quite general wave group given in equation (6-21) is a solution of the free-particle Schrödinger equation, provided that each plane wave's w does satisfy the matter-wave dispersion relation given in (6-23).

A beam of particles of energy E incident upon a potential step ofU0=(5/4)E is described by wave function:ψinc(x)=eikx

  1. Determine the reflected wave and wave inside the step by enforcing the required continuity conditions to obtain their (possibly complex) amplitudes.
  2. Verify the explicit calculation the ratio of reflected probability density to the incident probability density is 1.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free