Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What fraction of a beam of 50eVelectrons would get through a 200V1nm wide electrostatic barrier?

Short Answer

Expert verified

The required answer is 1.1×10-54

Step by step solution

01

Definition of Tunneling

Tunneling defines the penetration of a barrier of high energy by a low-energy wave or particle. For a wide barrier that transmits ineffectively:

T=16EU(1-EU)e-2kl

Where,k=2mU-Eand l is width of penetration barrier,U=qV

02

Given/known parameters

V=200V,E=50eV,I=1nm=10-9m

03

Solution

U=qv=1.6×10-19×200J1.6×10-19eV/J=200eV

k=2×9.1×10-31×(200-50)×1.6×10-19J/eV1.05×10-34

k=62.7×109m-1

Now,T=16502001-50200e-2×62.7×109×10-9=1.1×10-54

04

Explanation and Conclusion

The fraction of beam of 50eVtransmitted through a barrier of 200Vand 1nmwidth is1.1×10-54.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Example 6.3 gives the refractive index for high-frequency electromagnetic radiation passing through Earth’s ionosphere. The constant b, related to the so-called plasma frequency, varies with atmospheric conditions, but a typical value is8×1015rad2/s2 . Given a GPS pulse of frequency1.5GHz traveling through 8kmof ionosphere, by how much, in meters, would the wave group and a particular wave crest be ahead of or behind (as the case may be) a pulse of light passing through the same distance of vacuum?

Solving the potential barrier smoothness conditions for relationships among the coefficients A,B and Fgiving the reflection and transmission probabilities, usually involves rather messy algebra. However, there is a special case than can be done fairly easily, through requiring a slight departure from the standard solutions used in the chapter. Suppose the incident particles’ energyEis preciselyU0.

(a) Write down solutions to the Schrodinger Equation in the three regions. Be especially carefull in the region0<x<L. It should have two arbitrary constants and it isn’t difficult – just different.

(b) Obtain the smoothness conditions, and from these findR and T.

(c) Do the results make sense in the limitL?

The potential energy barrier in field emission is not rectangular, but resembles a ramp, as shown in Figure 6.16. Here we compare tunnelling probability calculated by the crudest approximation to that calculated by a better one. In method 1, calculate T by treating the barrier as an actual ramp in which U - E is initiallyϕ, but falls off with a slop of M. Use the formula given in Exercise 37. In method 2, the cruder one, assume a barrier whose height exceeds E by a constant ϕ/2(the same as the average excess for the ramp) and whose width is the same as the distance the particle tunnels through the ramp. (a) Show that the ratio T1/T2 is e8mϕ33hM . (b) Do the methods differ more when tunnelling probability is relatively high or relatively low?

How should you answer someone who asks, “In tunneling through a simple barrier, which way are particles moving, in the three regions--before, inside, and after the barrier?”

As we learn in physical optics, thin-film interference can cause some wavelengths of light to be strongly reflected while others not reflected at all. Neglecting absorption all light has to go one way or the other, so wavelengths not reflected are strongly transmitted. (a) For a film, of thickness t surrounded by air, what wavelengths λ (while they are within the film) will be strongly transmitted? (b) What wavelengths (while they are “over” the barrier) of matter waves satisfies condition (6-14)? (c) Comment on the relationship between (a) and (b).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free