Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A particle moving in a region of zero force encounters a precipice---a sudden drop in the potential energy to an arbitrarily large negative value. What is the probability that it will “go over the edge”?

Short Answer

Expert verified

I will definitely reflect for U0tending to infinite.

Step by step solution

01

Given known parameters

T=4E(E-U0)(E+E-U0)2

02

Solution

As U0tends to , the transmission coefficient tends to 0

Thus reflection is definitely possible.

03

Explanation and Conclusion

We might suppose that there should be a smooth match to an answer within the region beyond the downward step. But the actual fact that the P.E. is infinite means the derivative is discontinuous at the drop. The wave function is solely an undulation to the left of the step, zero at the step, and nil beyond the step.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Example 6.3 gives the refractive index for high-frequency electromagnetic radiation passing through Earth’s ionosphere. The constant b, related to the so-called plasma frequency, varies with atmospheric conditions, but a typical value is8×1015rad2/s2 . Given a GPS pulse of frequency1.5GHz traveling through 8kmof ionosphere, by how much, in meters, would the wave group and a particular wave crest be ahead of or behind (as the case may be) a pulse of light passing through the same distance of vacuum?

For wavelengths less than about 1 cm, the dispersion relation for waves on the surface of water is ω=(γ/p)k3, whereandare the surface tension and density of water. Givenγ=0.072N/mandp=103kg/m3, calculate the phase and group velocities for a wave of 5mm wavelength.

Consider a potential barrier of height 30eV. (a) Find a width around1.000nmfor which there will be no reflection of 35eVelectrons incident upon the barrier. (b) What would be the reflection probability for 36eVelectrons incident upon the same barrier? (Note: This corresponds to a difference in speed of less than1(1/2)%.

Exercise 39 gives the condition for resonant tunneling through two barriers separated by a space of width 2 s, expressed in terms of a factor βgiven in Exercise 30. (a) Suppose that in some system of units, k and α are both2π. Find two values of 2s that give resonant tunneling. What are these distances in terms of wavelengths ofψ? Is the term resonant tunneling appropriate?(b) Show that the condition has no solution if s = 0 and explain why this must be so. (c) If a classical particle wants to surmount a barrier without gaining energy, is adding a second barrier a good solution?

For wavelengths greater than about,20cm the dispersion relation for waves on the surface of water isω=gk

(a) Calculate the phase and group velocities for a wave ofwavelength.

(b) Will the wave spread as it travels? Justify your answer.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free