Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate the reflection probability 5evfor an electron encountering a step in which the potential drop by 2ev

Short Answer

Expert verified

The reflection probability is 0.007

Step by step solution

01

Definition of Reflection Probability

Reflection probability or reflection coefficient is defined as the ratio of amplitude of reflected wave to that of incident wave.

R=k2-k1k2+k12

Where, localid="1657549250276" k2=2m(E-v0)2 andk1=2mE2

02

Given/known parameters

E=5eV andV0=2eV

03

Solution

Substituting the values in the formula:

R=5-(-2)-55-(-2)+52

R=0.007

04

Explanation and Conclusion

The reflection probability is 0.007,i.e., there is0.7% chance of particle being reflected back.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

How should you answer someone who asks, “In tunneling through a simple barrier, which way are particles moving, in the three regions--before, inside, and after the barrier?”

Given the situation of exercise 25, show that

(a) as Uo, reflection probability approaches 1 and

(b) as L0, the reflection probability approaches 0.

(c) Consider the limit in which the well becomes infinitely deep and infinitesimally narrow--- that is Uoand data-custom-editor="chemistry" L0but the product U0L is constant. (This delta well model approximates the effect of a narrow but strong attractive potential, such as that experienced by a free electron encountering a positive ion.) Show that reflection probability becomes:

R=[1+2h2EmUoL2]-1

As we learned in example 4.2, in a Gaussian function of the formψ(x)αe-(x2/2ε2)is the standard deviation or uncertainty in position.The probability density for gaussian wave function would be proportional toψ(x)squared:e-(x2/2ε2). Comparing with the timedependentGaussian probability of equation (6-35), we see that the uncertainty in position of the time-evolving Gaussian wave function of a free particle is given by

.Δx=ε1+h2t24m2ε4 That is, it starts atand increases with time. Suppose the wave function of an electron is initially determined to be a Gaussian ofuncertainty. How long will it take for the uncertainty in the electron's position to reach5m, the length of a typical automobile?

Solving the potential barrier smoothness conditions for relationships among the coefficients A,B and Fgiving the reflection and transmission probabilities, usually involves rather messy algebra. However, there is a special case than can be done fairly easily, through requiring a slight departure from the standard solutions used in the chapter. Suppose the incident particles’ energyEis preciselyU0.

(a) Write down solutions to the Schrodinger Equation in the three regions. Be especially carefull in the region0<x<L. It should have two arbitrary constants and it isn’t difficult – just different.

(b) Obtain the smoothness conditions, and from these findR and T.

(c) Do the results make sense in the limitL?

Consider a potential barrier of height 30eV. (a) Find a width around1.000nmfor which there will be no reflection of 35eVelectrons incident upon the barrier. (b) What would be the reflection probability for 36eVelectrons incident upon the same barrier? (Note: This corresponds to a difference in speed of less than1(1/2)%.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free