Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercise 81 obtained formulas for hydrogen like atoms in which the nucleus is not assumed infinite, as in the chapter, but is of mass,m1 whilem2is the mass of the orbiting negative charge. (a) What percentage error is introduced in the hydrogen ground-state energy by assuming that the proton is of infinite mass? (b) Deuterium is a form of hydrogen in which a neutron joins the proton in the nucleus, making the nucleus twice as massive. Taking nuclear mass into account, by what percent do the ground-state energies of hydrogen and deuterium differ?

Short Answer

Expert verified

Answer:
(a) The energy predicted by ignoring the proton’s finite mass is too high by

(b) The ground state energy of hydrogen is less than 0.02% of the ground state energy of Deuterium.

Step by step solution

01

(a) Percentage error is introduced in the hydrogen ground-state energy:

Effective mass simplifies band structures because modelling the behaviour of a free particle with that mass can be observed easily.

Ifis the effective mass and m is the mass, the actual energy will be μ/mtimes the hydrogen energy.

Now, if meandmp are the mass of electron and proton,
μm=memp/(me+mp)me=11+me/mp=11+9.11×1031/1.673×10-27=1-0.00054

Hence, the energy predicted by ignoring the proton’s finite mass is too high by 0.054% .

02

(b) Ground state energy of Deuterium and Hydrogen:

Also, the ratio of energies( En)of Deuterium and Hydrogen will be equal to the ratio of their reduced masses (μ).
localid="1659466466571" EDeuterinumEHydrogen=μDeuterinumμHydrogen=memDeut/(memDeut)memp/(me/mp)=1+(me/mp)1+(me/mDeut)EDeuteriumEHydrogen=1+(9.11×10-31/1.673×10-27)1+(9.11×10-31/2×1.673×10-27)=1.00027

Hence, the ground state energy of hydrogen is less than 0.027% of the ground state energy of Deuterium.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: The 2D Infinite Well: In two dimensions the Schrödinger equation is

(2x2+2y2)ψ(x,y)=-2m(E-U)h2ψ(x,y)

(a) Given that U is a constant, separate variables by trying a solution of the form ψ(x,y)=f(x)g(y), then dividing byf(x)g(y) . Call the separation constants CX and CY .

(b) For an infinite well

role="math" localid="1659942086972" U={00<x<L,0<y<Lotherwise

What should f(x) and g(y) be outside the well? What functions should be acceptable standing wave solutions f(x) for g(y) and inside the well? Are CX and CY positive, negative or zero? Imposing appropriate conditions find the allowed values of CX and CY .

(c) How many independent quantum numbers are there?

(d) Find the allowed energies E .

(e)Are there energies for which there is not a unique corresponding wave function?

Question: Consider an electron in the ground state of a hydrogen atom. (a) Calculate the expectation value of its potential energy. (b) What is the expectation value of its kinetic energy? (Hint: What is the expectation value of the total energy?)

Doubly ionized lithium , Li2, absorbs a photon and jumps from the ground state to its n=2level. What was the wavelength of the photon?

As we see in Figures 10.23, in a one dimensional crystal of finite wells, top of the band states closely resemble infinite well states. In fact, the famous particle in a box energy formula gives a fair value for the energies of the band to which they belong. (a) If for nin that formula you use the number of anitnodes in the whole function, what would you use for the box length L? (b) If, instead, the n in the formula were taken to refer to band n, could you still use the formula? If so, what would you use for L? (c) Explain why the energies in a band do or do not depend on the size of the crystal as a whole.

It is shown in section 6.1 that for the E<U0 potential step, B=-α+ikα-ikA. Use it to calculate the probability density to the left of the step:

|ψx<0|2=|Aeikx+Be-ikx|2

  1. Show that the result is, 4|A|2sin2(kx-θ)where θ=tan-1(k/α). Because the reflected wave is of the same amplitude as the incident, this is a typical standing wave pattern varying between 0and 4A*A.
  2. Determine data-custom-editor="chemistry" θand Din the limits kanddata-custom-editor="chemistry" αtend to 0and interpret your results.
See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free