Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Consider an electron in the ground state of a hydrogen atom. (a) Calculate the expectation value of its potential energy. (b) What is the expectation value of its kinetic energy? (Hint: What is the expectation value of the total energy?)

Short Answer

Expert verified

a) The expectation value of potential energy in the ground state of the hydrogen atom is.
-e24πε01a0

b) The expectation value of kinetic energy in the ground state of the hydrogen atom is.
12e24πε01a0
12e24πε01a0

Step by step solution

01

 Given data

To be considered an electron in the ground state of a hydrogen atom

02

 Concept

The law of conservation of momentum states that the sum of kinetic energy and the potential energy for a particle always remains constant.

03

Solution

(a)

The expectation value of potential energy is,

PE=0-e24πε0rP(r)dr=-e24πε04a030re-2rla0dr

Substitute x for2ra0in the integration.

PE=-e24πε01a0xexdr=-e24πε01a0

Therefore, the expectation value of potential energy is-e24πε01a0 .

(b)

The total energy isrole="math" localid="1659471003767" -12e24πε01a0

The kinetic energy can be calculated by subtracting potential energy from the total energy

KE= E - PE

for E=-12e24πr01a0andPE=-e24πε01a0, we have-
KE=-12e24πε01a0--e24πr01a0=12e24πε01a0

Therefore, the expectation value of kinetic energy is12e24πε01a0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Here we investigate the link between nand l, reflected in equation (7-33). (a) Show that if a classical point charge were held in a circular orbit about a fixed point charge by the Coulomb force, its kinetic energy would be given by KE=e2/8πε0r (b) According to equation (7-30), the rotational kinetic energy in hydrogen is h2l(l+1)/2mr2. Of course, ris not well defined for a “cloud”, but by usingr=n2a0argue that the condition that l not exceed n is reasonable.

Question: The carbon monoxide molecule CO has an effective spring constant of 1860N/m and a bond length of 0.113nnm . Determine four wavelengths of light that CO might absorb in vibration-rotation transitions.

You are in a bus travelling on a straight road at 20m/s. As you pass a gas station, your clock and a clock in station read precisely 0. You pass another gas station 900m farther down the road. (in the frame of reference of the gas stations., all gas station clocks synchronized.) (a) As you pass the: second station, do you find its clock to be ahead of, or: behind your own clock and (b) by how much?

Question: Show that the normalization constant 15/32π given in Table 7.3 for the angular parts of the l=2,ml=±2 wave function is correct.

Electromagnetic "waves" strike a single slit of1μmwidth. Determine the angular full width (angle from first minimum on one side of the center to first minimum on the other) in degrees of the central diffraction maximum if the waves are (a) visible light of wavelength 500 nmand (b) X-rays of wavelength 0.05 nm. (c) Which more clearly demonstrates a wave nature?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free