Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

As we see in Figures 10.23, in a one dimensional crystal of finite wells, top of the band states closely resemble infinite well states. In fact, the famous particle in a box energy formula gives a fair value for the energies of the band to which they belong. (a) If for nin that formula you use the number of anitnodes in the whole function, what would you use for the box length L? (b) If, instead, the n in the formula were taken to refer to band n, could you still use the formula? If so, what would you use for L? (c) Explain why the energies in a band do or do not depend on the size of the crystal as a whole.

Short Answer

Expert verified
  1. The length L will take the length of the whole crystal.
  2. The use of L is the length of the single atom.
  3. The reason is explained

Step by step solution

01

Determine the formulas

Consider the formula for the relation between the energy of the particle in the box as follows:

E=n2h28mL2

Here, E is the energy, n is the number of antinodes, h is the planck’s constant and m is the mass.

02

Determine the answer for part (a)

Consider the crystal is considered as the box and the length L is taken as the length of the whole crystal. As the length L covers the all the n antinodes.

03

Determine the answer for part (b)

Consider the equation that determines the energy as:

E=(nN)2πh22md2

Resolve the equation as:

E=(n)2πh22mWN2E=(n)2πh22ma2

Hence, for n to be the band the use of L is the length of the single atom as the n corresponds to the number of antinodes in the single atom.

04

Determine the answer for part (c)

Consider that the band energy is clustered around the corresponding single atom energy and it do not depend on the number of atoms in the crystal this is why the band energy is independent of the size of the crystal.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a particle in the ground state of a finite well. Describe the changes in its wave function and energy as the walls are made progressively higher (U0 is increased) until essentially infinite.

Consider the following function:

f(x)={Ce+αx-<x<0Be-αx0x+

(a) Sketch this function. (Without loss of generality, assume that C is greater than B.) Calculate the Fourier transform A(k).

(b) Show that for large k,A(k)is proportional to 1k.

(c) In general,f(x)is not continuous. Under what condition will it be, and howA(k)does behave at large values ofk if this condition holds?

(d) How does a discontinuity in a function affect the Fourier transform for large values of k?

A plank fixed to a sled at rest in frame S, is of length L0and makes an angle of θ0with the x-axis. Later the sled zooms through frame S at a constant speed v parallel to the x-axis. Show that according to an observer who remains at rest in frame S, the length of the plank is now

L=L01-v2c2cosθ0

And the angle it makes with the x-axis is

θ=tan-1(γvtanθ0)

Electromagnetic "waves" strike a single slit of1μmwidth. Determine the angular full width (angle from first minimum on one side of the center to first minimum on the other) in degrees of the central diffraction maximum if the waves are (a) visible light of wavelength 500 nmand (b) X-rays of wavelength 0.05 nm. (c) Which more clearly demonstrates a wave nature?

You are in a bus travelling on a straight road at 20m/s. As you pass a gas station, your clock and a clock in station read precisely 0. You pass another gas station 900m farther down the road. (in the frame of reference of the gas stations., all gas station clocks synchronized.) (a) As you pass the: second station, do you find its clock to be ahead of, or: behind your own clock and (b) by how much?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free