Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: An electron is in an n = 4 state of the hydrogen atom. (a) What is its energy? (b) What properties besides energy are quantized, and what values might be found if these properties were to be measured?

Short Answer

Expert verified

Answer:

(a) The energy of the hydrogen atom in the given state is -0.8eV.

(b) The magnitude of the angular momentum of the hydrogen atom in the given state is 2.633×10-15eV·s.

Step by step solution

01

Given information:

The energy level of the hydrogen atom is, n = 4.

02

Energy of electron: 

According to Bohr's atomic model, the electron is excited to a higher energy state by absorbing energy in the form of photons. At a higher energy level, the excited electron is less stable and quickly emits a photon to return to a lower, more stable energy level.

The emitted energy can be calculated using the following equation,

En=-1n2×13.6eV

Here, n is the energy level of the electron.

03

(a) Energy of the hydrogen atom: 

The formula for the energy of an atom in the nth level of the hydrogen atom is given by,

En=-1n2×13.6eV

Putting n = 4 in the above equation, you get

E4=-142×13.6eV=-116×13.6eV=-0.85eV

Hence, the energy of the hydrogen atom in the given state is -0.85 eV.

04

(b) Other quantized values:

The 'angular momentum magnitude' and the 'z-component of the angular momentum' are the two other properties that are quantized besides the energy.

The formula for the angular momentum of the hydrogen atom is given by,

L=nh2π

Here, h is Planck’s constant and its value is 4.136×10-15eV·s.

Substitute all known values in the above equation, you get

L=4×4.136×10-15eV·s2π=2.633×10-15eV·s

Hence, the magnitude of the angular momentum of the hydrogen atom in the given state is2.633×10-15eV·s .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Which electron transitions in singly ionized helium yield photon in the 450 - 500(blue) portion of the visible range, and what are their wavelengths?

71. In many kinds of integrated circuits. the preferred element of amplification/switching is nor the bipolar transistor discussed in the chapter, but the MOSFET (metal oxide semiconductor field effect transistor). Thecompany diagram shows one in its "normally off" state: Conduction electrons cannot flow from the n-type source, which is analogous to the emitter. "over the bump" in the ptype region to the n-type drain. analogous to the collector. (Annpn arrangement is shown. but just as for the bipolar transistor, a pnp would yield the complementary device.) The important difference is that rather than a direct electrical contact to the p-type region, as in the base of the bipolar, the centre lead, the gate, is a conductor bonded to the p-type region but separated by a thin insulating layer.

(a) Explain how applying a bias to the gate can cause this device to tum on. Should the gate bias voltage be positive or negative (relative to the source)? Why is the control mechanism referred to as "field effect"?

(b) The MOSFET is often said to be a "unipolar" device because valence holes (conduction elections in the pnp device) do not play the important role that they do in the bipolar. Explain. Would you expect a significant current through the gate due to electron-hole recombination in the p-type region? Why or why not?

(c) A low-input-impedance device is one in which there are large oscillations in input current for small oscillations in the input voltage. Correspondingly, a highinput-impedance device has a small input currentfor a large input voltage. Bearing in mind that the voltage across the forward-biased base-emitter diode of a bipolar transistor is always aboutEgape , while the input current is proportional to the output current, would you say that the bipolar transistor has low or high input impedance? What about the MOSFET?

Consider the following function:

f(x)={Ce+αx-<x<0Be-αx0x+

(a) Sketch this function. (Without loss of generality, assume that C is greater than B.) Calculate the Fourier transform A(k).

(b) Show that for large k,A(k)is proportional to 1k.

(c) In general,f(x)is not continuous. Under what condition will it be, and howA(k)does behave at large values ofk if this condition holds?

(d) How does a discontinuity in a function affect the Fourier transform for large values of k?

Calculate the probability that the electron in a hydrogen atom would be found within 30 degrees of the xy-plane, irrespective of radius, for (a) I=0 ,m1=0; (b) role="math" localid="1660014331933" I=1,mI=±1and (c) I=2,mI=±2. (d) As angular momentum increases, what happens to the orbits whose z-components of angular momentum are the maximum allowed?

Question: The 2D Infinite Well: In two dimensions the Schrödinger equation is

(2x2+2y2)ψ(x,y)=-2m(E-U)h2ψ(x,y)

(a) Given that U is a constant, separate variables by trying a solution of the form ψ(x,y)=f(x)g(y), then dividing byf(x)g(y) . Call the separation constants CX and CY .

(b) For an infinite well

role="math" localid="1659942086972" U={00<x<L,0<y<Lotherwise

What should f(x) and g(y) be outside the well? What functions should be acceptable standing wave solutions f(x) for g(y) and inside the well? Are CX and CY positive, negative or zero? Imposing appropriate conditions find the allowed values of CX and CY .

(c) How many independent quantum numbers are there?

(d) Find the allowed energies E .

(e)Are there energies for which there is not a unique corresponding wave function?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free