Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The spin-orbit interaction splits the hydrogen 4f state into many.

(a)Identity these states and rank them in order of increasing energy.

(b)If a weak external magnetic field were now introduced (weak enough that it does not disturb the spin-orbit coupling). Into how many different energies would each of these states be split?

Short Answer

Expert verified

a)4f52,4f72b)4f526states,f728states

Step by step solution

01

Given data

We are considering the 4f state.

02

Concept of the quantum number

The quantum number j=l±s

03

Possible States of 4f52 and 4f72and.        

Since the state is 4f, we conclude that the quantum number l is . Thus, the quantum number can have the following values

j=l±s=3±12=52,72

We write the possible states as

4f52,4f72

The states are ordered starting from the lower energy ones: this is due to the fact that higher j corresponds to higher energy.

04

Influence of a Weak Magnetic Field.

(b)

For j=52, the number of the possible values for mjis,

2j+1=2×52+1=6

The number of states that this state would break into under the influence of a weak magnetic field is 6.

For j=72, the number of possible values for mjis,

2j+1=2×72+1=8

The number of states that this state would break into under the influence of a weak magnetic field is 8.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: As indicated to remove one of the helium’s electrons requires24.6eV of energy when orbiting -24.6eV? Why or why not?

Figureshows the Stern-Gerlach apparatus. It reveals that spin-12particles have just two possible spin states. Assume that when these two beams are separated inside the channel (though still near its centreline). we can choose to block one or the other for study. Now a second such apparatus is added after the first. Their channels are aligned. But the second one is rotated about the-axis by an angle \(\phi\) from the first. Suppose we block the spin-down beam in the first apparatus, allowing only the spin-up beam into the second. There is no wave function for spin. but we can still talk of a probability amplitude, which we square to give a probability. After the first apparatus' spin-up beam passes through the second apparatus, the probability amplitude iscos(ϕ/2)2nd+sin(ϕ/2)2ndwhere the arrows indicate the two possible findings for spin in the second apparatus.

(a) What is the probability of finding the particle spin up in the second apparatus? Of finding it spin down? Argue that these probabilities make sense individually for representative values ofϕand their sum is also sensible.

(b) By contrasting this spin probability amplitude with a spatial probability amplitude. Such asψ(x)=Aete2. Argue that although the arbitrariness ofϕgives the spin cases an infinite number of solves. it is still justified to refer to it as a "two-state system," while the spatial case is an infinite-state system.

In its ground state, nitrogen's 2p electrons interact to produce jT=32. Given Hund's rule, how might the orbit at angular momenta of these three electrons combine?

Using a beam of electrons accelerated in an X-ray tube, we wish to knock an electron out of the shell of given element in a target. Section \(7.8\) gives the energies in a hydrogen like atom as . Z2(-13.6eV/n2)Assume that for fairly high Z , aK-shell electron can be treated as orbiting the nucleus alone.

(a) A typical accelerating potential in an X-ray tube is50kV . In roughly how high aZcould a hole in the K -shell be produced?

(b) Could a hole be produced in elements of higher Z?

A lithium atom has three electrons. These occupy individual particle states corresponding to the sets of four quantum numbers given by .

(n,l,ml,mj)=(1,0,0,+12),(1,0,0,-12)and(2,0,0,+12)

Using ψ1,0,0(rj),ψ1,0,0(rj),andψ2,0,0(rj) to represent the individual-particle states when occupied by particlej . Apply the Slater determinant discussed in Exercise 42 to find an expression for an antisymmetric multiparticle state. Your answer should be sums of terms like .

ψ1,0,0(r1),ψ1,0,0(r2),andψ2,0,0(r3)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free