Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Repeat example 8.6 but assume that the upper state is the 2p12rather than the2p32

Short Answer

Expert verified

The 1s12and 2p12states are both split into two levels.

Step by step solution

01

 Step 1: Concept of the ordering Rule for Z- projection.

The ordering rule for the quantum number of the z-projection of the total angular momentum mjis:mj=-j,-j+1,....,j-1,j

Here Jis the quantum number for the total angular momentum.

02

Determine the state of two levels which is split

The J 's for the1s12 and2p12states are both12since that's what the subscripts of the states are. Consequently, the's are given by:

mj=-12,+12

The 1s12and2p12states are both split into two levels.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What is the minimum possible energy for five (non-interacting) spin -12particles of massmin a one dimensional box of length L ? What if the particles were spin-1? What if the particles were spin -32?

Using the general rule for adding angular momenta discussed in Section 8.7 and further in Exercise 66, Find the allowed values ofjTfor three spin 12 fermions. First add two, then add the third.

A Simple Model: The multielectron atom is unsolvable, but simple models go a long way. Section7.8gives energies and orbit radii forone-electron/hydrogenlike atoms. Let us see how useful these are by considering lithium.

(a) Treat one of lithium'sn=1electrons as a single electron in a one-electron atom ofrole="math" localid="1659948261120" Z=3. Find the energy and orbit radius.

(b) The othern=1electron being in the same spatial state. must have the same energy and radius, but we must account for the repulsion between these electrons. Assuming they are roughly one orbit diameter apart, what repulsive energy would they share, and if each claims half this energy. what would be the energies of these two electrons?

(c) Approximately what charge does lithium's lone valence electron orbit, and what radius and energy would it have?

(d) Is in reasonable to dismiss the role of then=1electrons in chemical reactions?

(e) The actual energies of lithium's electrons are about-98eV(twice, of course) and-5.4eV. How good is the model?

(f) Why should the model's prediction for the valence electron's energy differ in the direction it does from the actual value?

To investigate the claim that lowerimplies lower f energy. consider a simple case: lithium. which has twon=1electrons and alonen=2valence electron.

(a)First find the approximate orbit radius, in terms ofa0. of ann=1electron orbiting three protons. (Refer to Section 7.8.)

(b) Assuming then=1electrons shield/cancel out two of the protons in lithium's nucleus, the orbit radius of ann=2electron orbiting a net charge of just+e.

(c) Argue that lithium's valence electron should certainly have lower energy in a 25 state than in a2pstale. (Refer Figure 7.15.)

What angles might the intrinsic angular momentum vector make with the z-axis for a deuteron? (See Table 8.1)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free