Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Slater determinant is introduced in Exercise 42. Show that if states n and n'of the infinite well are occupied. with the particle in state n being spin up and the one in being spin down. then the Slater determinant yields the antisymmetric multiparticle state: ψn(x1)ψn'(x2)ψm2(x1)ψn(x2).

Short Answer

Expert verified

The resultant answer is proved.

Step by step solution

01

Given data 

The given data is ψn(x1)ψn'(x1)ψn(x2)ψn'(x2).

02

Concept of Slater determinant

A determinant is an expression that describes the wave function of a multi-fermionic system.

It satisfies anti-symmetry requirements, and consequently the Pauli principle, by changing sign upon exchange of two electrons (or other fermions).

03

Simplify the expression

Slater Determinant is used to express multi-particle states for fermions of anti-symmetric character.

The two wave functions ψ(x1) and ψ(x2)have states n and n'that are occupied b spin up for staten, and spin down for state n'.

The Slater determinant of these states can be expressed by the determinant of 2×2matrix as follows:

Ψ=ψn(x1)ψn'(x1)ψn(x2)ψn'(x2)Ψ=ψn(x1)ψn'(x1)ψn(x2)ψn'(x2)

Therefore, the required result is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A beam of identical atoms in their ground state is sent through a Stem-Gerlach apparatus and splits into three lines. Identify possible sets {sT,LT}of their total spin and total orbital angular momentum? Ignore possibilities in which sT is 2 or higher.

Show that the symmetric and anti symmetric combinations of (819)and(820)are solutions of the two. Particle Schrödinger equation(813)of the same energy asψn(x1)ψm(x2), the unsymmetrized product(817).

(a) To determine the repulsive energy between the two electrons in helium.

(b) To determine the distance of electrons that would have to be separated.

(c) To compare distance with approximate orbit radius in Z=2hydrogen like atom.

Slater Determinant: A convenient and compact way of expressing multi-particle states of anti-symmetric character for many fermions is the Slater determinant:

|ψn1x1m31ψn2x1m32ψn3x1m33···ψnNx1msNψn1x2m11ψn2x2m32ψn3x2m33···ψψn1x2msNψn3x3m31ψn2x3m12ψn3x3m33ψnNx3msN···············ψn1xNm11ψn2xNm32ψn3xNm33···ψnNxNmsN|

It is based on the fact that for N fermions there must be Ndifferent individual-particle states, or sets of quantum numbers. The ith state has spatial quantum numbers (which might be ni,i, and mfi) represented simply byni and spin quantum number msi. Were it occupied by the ith particle, the slate would beψni(xj)msi a column corresponds to a given state and a row to a given particle. For instance, the first column corresponds to individual particle state ψn(xj)ms1. Where jprogresses (through the rows) from particle 1 to particle N. The first row corresponds to particle I. which successively occupies all individual-particle states (progressing through the columns). (a) What property of determinants ensures that the multiparticle state is 0 if any two individual particle states are identical? (b) What property of determinants ensures that switching the labels on any two particles switches the sign of the multiparticle state?

Suppose that the channel’s outgoing end is in the hydrogen l=0Stem-Gerlach apparatus of the figure. You place a second such apparatus whose channel is aligned with the first but rotated 90°about the x-axis, so that its B –field lines point roughly in the y-direction instead of the. What would you see emerging at the end of your added apparatus? Consider the behavior of the spin-up and spin-down beams separately. Assume that when these beams are separated in the first apparatus, we can choose to block one or the other for study, but also assume that neither deviates too far from the center of the channel.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free