Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The weight of the Empire State Building is 365kilotons. Show that the complete conversion of 1kgof mass would provide sufficient energy to putli.is rather large object in a low Earth orbit or LEO for short. (Orbit radius Earth's radius).

Short Answer

Expert verified

LEO is the orbit very close to the earth’s surface, mostly under 1000km, but can be as low as 160km. Here, in this problem we have to check if conversion energy of 1kg of mass is sufficient to get the Empire State Building of 365 kilotons into a low earth orbit.

Step by step solution

01

Calculate the conversion energy of mass of1 kg

Here, the conversion energy can be easily calculated using Einstein’s famous mass-energy relation, that is E=mc2

=9×1016J

02

Determine the energy required to get the building to low earth orbit

To get an object in LEO, the first object needs to be moved from the surface to an altitude of 160kmor more and it needs a minimum velocity to stay in orbit to avoid crashing. This minimum velocity required to stay in orbit is called orbital velocity.

Velocity Vo=gRE=GMERE. For simplicity we will assume that the earth is not rotating that is the building is initially at rest. Now, we will apply Work-Energy relation for Earth-Building system,

W=ΔK+ΔU

=12MBVo2+GMEMB1RE-12Ro

Here, the orbit radius is the same as the earth’s radius as given in the problem statement. And by putting values of quantities in the above equation we get the value of energy1.14×1016J as which is far less compared to conversion energy of 1kgof mass. Therefore, the conversion energy of1kg mass is quite sufficient to get such a massive object that is The Empire State Building into Low Earth Orbit.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The light from galaxy NGC 221 consists of a recognizable spectrum of wavelengths. However, all are shifted towards the shorter-wavelength end of the spectrum. In particular, the calcium “line” ordinarily observed at 396.85nmis observed at 396.58nm. Is this galaxy moving toward or away from Earth? At what speed?

A projectile is a distance r from the center of a heavenly body and is heading directly away. Classically, if the sum of its kinetic and potential energies is positive, it will escape the gravitational pull of the body, but if negative, it cannot escape. Now imagine that the projectile is a pulse of light energy E. Since light has no internal energy ,E is also the kinetic energy of the light pulse. Suppose that the gravitational potential energy of the light pulse is given by Newton’s classical formula U=-(GMm/r), where M is the mass of the heavenly body and m is an “effective mass” of the light pulse. Assume that this effective mass is given by m=E/c2.

Show that the critical radius for which light could not escape the gravitational pull of a heavenly body is within a factor of 2 of the Schwarzschild radius given in the chapter. (This kind of “semiclassical” approach to general relativity is sometimes useful but always vague. To be reliable, predictions must be based from beginning to end on the logical, but unfortunately complex, fundamental equations of general relativity.)

Refer to Figure 2.18. (a) How long is a spaceship? (b) At what speed do the ships move relative to one another? (c) Show that Anna’s times are in accord with the Lorentz transformation equations. (d) Sketch a set of diagrams showing Anna’s complementary view of the passing of the ships. Include times in both frames.

The boron-14nucleus (mass: 14.02266 u) "beta decays," spontaneously becoming an electron (mass: 0.00055 u) and a carbon- 14nucleus (mass: 13.99995 u). What will be the speeds and kinetic energies of the carbon-14nucleus and the electron? (Note: A neutrino is also produced. We consider the case in which its momentum and energy are negligible. Also, because the carbon-14 nucleus is much more massive than the electron it recoils ''slowly'';γC1 .)

According to an observer at Earth's equator, by how much would his clock and one on a satellite in geosynchronous orbit differ in one day? (Geosynchronous orbit means an orbit period of one day-always in the same place in the sky)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free