Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is the ratio of the relativistically correct expression for momentum to the classical expression? Under what condition does the deviation become significant?

Short Answer

Expert verified

The ratio of the relativistically correct expression for momentum Prto the classical expression Pcis equal to the Lorentz factor.

PrPc=γ

=11-vc2

The deviation for relativistically correct expression for momentum becomes significant for the non-relativistic speed of particles.

Step by step solution

01

Relativistic Momentum

For the particles moving at relativistic speeds, the mass no longer remains constant but increases with an increase in velocity. This varying mass is called dynamic mass which is Lorentz factor times the rest mass of the particle.

02

Determination of relativistic correct expression for momentum and classical expression for momentum

The relativistically correct expression for momentum is given as:

Pr=γmv

Here is the mass of the particle, c is the speed of light, γ is the Lorentz factor and its value is 1-vc2and v is the speed of the particle

The classical expression for momentum is given as:

Pc=mv

03

Determination of the ratio of relativistic correct expression and classical expression for momentum

The ratio of relativistic correct expression and classical expression for momentum is given as:

PrPc=γmvmv=γ=11-vc2

04

Determination of condition for deviation

When speed of particle becomes very small compared to the speed of light vcthen Lorentz factor becomes unity and relativistically correct expression for momentum changes to classical formula of momentum.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Determine the Lorentz transformation matrix giving position and time in framefromS'those in framein the classical limitlocalid="1657533931071" v<<c. (b) Show that it yields equations (2-1).

Anna and Bob are both born just as Anna's spaceship passes Earth at 0.9c. According to Bob on Earth planet Z is a fixed away. As Anna passes planet Z on her continuing onward journey, what will be

(a) Bob's age according to Bob

(b) Bob's age according to Anna

(c) Anna's age according to Anna

(d) Anna's age according to Bob

Equation (2-30) is an approximation correct only if the gravitational time-dilation effect is small. In this exercise, it is also assumed to be small. but we still allow for a nonuniform gravitational field. We start with (2-29), based on the Doppler effect in the accelerating frame. Consider two elevations, the lower at r1 and the upper at r1+dr. Equation (2·29) becomes

f(r1+dr)f(r1)=(1-gr1drc2)

Similarly, if we consider elevationsdata-custom-editor="chemistry" r1+dr and data-custom-editor="chemistry" r1+2dr, we have

f(r1+2dr)f(r1+dr)=(1-gr1+drdrc2)

We continue the process, incrementing r by dr, until we reach r2.

f(r2)f(r2-dr)=(1-gr2-drdrc2)

Now imagine multiplying the left sides of all the equations and setting the product equal to the product of all the right sides. (a) Argue that the left side of the product is simply f(r2)/f(r1). (b) Assuming that the termgdr/c2 in each individual equation is very small. so that productsof such termscan be ignored, argue that the right side of the product is

1-1c2g(r)dr

(c) Deduceg(r) from Newton’s universal law of gravitation, then argue that equation (2-31) follows from the result, just as (2-30) does from (2-29).

Anna and Bob are In identical spaceships, each 100 m long. The diagram shows Bob's, view as Anna's ship passes at 0.8c. Just as the backs of the ships pass one another, both clocks.there read O. At the instant shown, Bob Jr., on board Bob's ship, is aligned with the very front of Anna's ship. He peers through a window in Anna's ship and looks at the clock. (a) In relation to his own ship, where is Bob Jr? (b) What does the clock he sees read?

Show that for a source moving towards an observer equation (2-17) becomesfobs=fsource1+v/c1-v/c

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free