Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

To catch speeders, a police radar gun detects the beat frequency between the signal it emits and that which reflects off a moving vehicle. What would be the beat frequency for an emitted signal of 900 Mhz reflected from a car moving at 30 m/s ?

Short Answer

Expert verified

The beat frequency between the Doppler shifted frequency and original frequency is180Hz .

Step by step solution

01

Write the given data from the question

The speed of the car,vs=30m/s

The frequency of the emitted signal, f=900Mhz

02

Beat frequency

The expression for the Doppler shift is given as follows.

ff=v5c

Here, v5 is the speed of the source, c is the speed of the light andf is the beat frequency.

03

Calculate the beat frequency for the emitted signal

To calculate the beat frequency, equation for beat frequency and Doppler shift required.

ff=2Vtargetc …… (i)

Calculate the beat frequency,

Substitute 3×108m/sforc,900MHzforfand30m/sforVsinto equation (i).

f900×106=2×303×108f=603×108×900×106f=5403f=180Hz

Hence the beat frequency between the Doppler shifted frequency and original frequency is 180 Hz .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Equation (2-30) is an approximation correct only if the gravitational time-dilation effect is small. In this exercise, it is also assumed to be small. but we still allow for a nonuniform gravitational field. We start with (2-29), based on the Doppler effect in the accelerating frame. Consider two elevations, the lower at r1 and the upper at r1+dr. Equation (2·29) becomes

f(r1+dr)f(r1)=(1-gr1drc2)

Similarly, if we consider elevationsdata-custom-editor="chemistry" r1+dr and data-custom-editor="chemistry" r1+2dr, we have

f(r1+2dr)f(r1+dr)=(1-gr1+drdrc2)

We continue the process, incrementing r by dr, until we reach r2.

f(r2)f(r2-dr)=(1-gr2-drdrc2)

Now imagine multiplying the left sides of all the equations and setting the product equal to the product of all the right sides. (a) Argue that the left side of the product is simply f(r2)/f(r1). (b) Assuming that the termgdr/c2 in each individual equation is very small. so that productsof such termscan be ignored, argue that the right side of the product is

1-1c2g(r)dr

(c) Deduceg(r) from Newton’s universal law of gravitation, then argue that equation (2-31) follows from the result, just as (2-30) does from (2-29).

A light beam moves at an angleθ with the x-axis as seen from frame S. Using the relativistic velocity transformation, find the components of its velocity when viewed from frame S'. From these, verify explicitly that its speed is c.

From a standstill. you begin jogging at5m/s directly toward the galaxy Centaurus A. which is on the horizon 2×1023maway.

(a) There is a clock in Centaurus A. According to you. How Will readings on this clock differ before and after you begin jogging? (Remember: You change
frames.)

(b) The planet Neptune is between Earth and Centaurus 4.5×109mis from Earth- How much readings a clock there differ?

(c)What would the time differences if had instead begun jogging in the opposite direction?

(d) What these results tell you about the observations of a traveling twin who accelerates toward his Earth-bound twin? How would these observation depend on the distance the twins?

How fast must be a plane 50 m long travel to be found by observer on the ground to be 0.10 nm shorter than 50 m?

Exercise 117 gives the speed u of an object accelerated under a constant force. Show that the distance it travels is given by

x=mc2f2[1+Ftmc2-1]

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free