Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Determine the Lorentz transformation matrix giving position and time in frame s'from those in the frame sfor the case ν=0.5c.

(b) If frame s''moves at 0.5crelative to frame , the Lorentz transformation matrix is the same as the previous one. Find the product of two matrices, which gives x''and t'' from x and t .

(c) To what single speed does the transformation correspond? Explain this result.

Short Answer

Expert verified
  1. The Lorentz transformation is 1.1500-0.57501000010-0.575001.15
  2. The Lorentz transformation is 1.6500-1.3201000010-1.32000=1.65 .
  3. This corresponds to a speed of 0.8c.

Step by step solution

01

Determine Lorentz transformation for the given case

(a) The general Lorentz transformation matrix is given by

x'y'z'ct'=γν00-γννc01000010-γννc00γcxyzct

for

ν=0.5c,γ0.5c=11-0.52=1.15

The resulting transformation matrix is as follows.

1.1500-0.57501000010-0.575001.15

02

Determine Lorentz’s transformation for S'' With Respect to S

(b) If another frame s''moves at velocity 0.5cwith respect to s', the position and time in s''in terms of that of the frame sis as follows.

x''y''z''ct''=1.1500-0.57501000010-0.575001.151.1500-0.57501000010-0.575001.15xyzct=1.6500-1.3201000010-1.32001.65xyzct

(c) Now, in the result of part (b), γv=1.65one can find the velocity corresponding with it by using the formula for the Lorentz factor that will give the velocity as ν=0.79c. If we have solved it classically, we would have got v = c. If the value of velocity was more than 0.5c for any one of the frames, classically, the resulting velocity would be more than the speed of light which violates Einstein’s second postulate that nothing can travel faster than light and the speed of light is a constant irrespective of the reference frame considered.

For relativistic resultant velocity of s''with respect to the frame s, our result can be verified using the relativistic velocity addition formula.

ν=ν1+ν21+ν1ν2c2=0.5c+0.5c1+0.5c2c2=0.8c

Hence, this transformation corresponds to speed 0.8c.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free