Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Exercise 80 discusses the idea of reduced mass. When two objects move under the influence of their mutual force alone, we can treat the relative motion as a one particle system of mass μ=m1v2/(m1+m2). Among other things, this allows us to account for the fact that the nucleus in a hydrogen like atom isn’t perfectly stationary, but in fact also orbits the centre of mass. Suppose that due to Coulomb attraction, an object of mass m2and charge -eorbits an object of mass m1 and charge +Ze . By appropriate substitution into formulas given in the chapter, show that (a) the allowed energies are Z2μmE1n2, where is the hydrogen ground state, and (b) the “Bohr Radius” for this system is ma0 ,where a0is the hydrogen Bohr radius.

Short Answer

Expert verified

(a) The allowed energies are isZ2μmE1n2.

(b) The Bohr’s Radius is ma0.

Step by step solution

01

Formula used:

From Section 7.8, you know that, all formulas for hydrogen apply to hydrogen like atoms if you simply replace e2toZe2.

Hence,

Energy levels of hydrogen like atoms, En=m(Ze2)22(4πε0)2h2n21n2 …………(1)

Where, z is the atomic mass, h is Plank’s constant, n = principal quantum number,ε0is the permittivity of free space.

And the Bohr’s Radius is,

rn=n2(4πε0)h2m(ze2) ….. (2)

Where, m is the mass.

02

Finding Energy levels:

Now, using eq. (1) and replacing mass (m) with Effective mass μ, you get,

En=mZe2224πε02h21n2=Z2μm-me424πε02h21n2=Z2μmE1n2

Hence, the allowed energies are Z2μmE1n2.

Where, E1is the Energy of hydrogen ground state.

03

Finding the Bohr’s Radius:

Again, using eq. (2) and replacing mass (m) with Effective mass μ, you get,

rn=124πε0h2μZe2=m4πε0h2me2=ma0

Hence, the Bohr’s Radius is ma0.

Where, a0is the hydrogen Bohr radius.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A mathematical solution of the azimuthal equation (7-22) is Φ(φ)=Ae-+Be- , which applies when D is negative, (a) Show that this simply cannot meet itself smoothly when it finishes a round trip about the z-axis. The simplest approach is to consider φ=0 and φ=2π. (b) If D were 0, equation (7-22) would say simply that the second derivative Φ(φ)of is 0. Argue than this too leads to physically unacceptable solution, except in the special case of Φ(φ) being constant, which is covered by the ml=0 , case of solutions (7-24).

A hydrogen atom electron is in a 2p state. If no experiment has been done to establish a z-component of angular momentum, the atom is equally likely to be found with any allowed value of LZ. Show that if the probability densities for these different possible states are added (with equal weighting), the result is independent of both ϕandθ

The expectation value of the electron’s kinetic energy in the hydrogen ground state equals the magnitude of the total energy (see Exercise 60). What must be the width of a cubic finite wall, in terms of a0, for this ground state to have this same energy?

A comet of 1014kg mass describes a very elliptical orbit about a star of mass3×1030kg , with its minimum orbit radius, known as perihelion, being role="math" localid="1660116418480" 1011m and its maximum, or aphelion, 100 times as far. When at these minimum and maximum

radii, its radius is, of course, not changing, so its radial kinetic energy is 0, and its kinetic energy is entirely rotational. From classical mechanics, rotational energy is given by L22I, where Iis the moment of inertia, which for a “point comet” is simply mr2.

(a) The comet’s speed at perihelion is6.2945×104m/s . Calculate its angular momentum.

(b) Verify that the sum of the gravitational potential energy and rotational energy are equal at perihelion and aphelion. (Remember: Angular momentum is conserved.)

(c) Calculate the sum of the gravitational potential energy and rotational energy when the orbit radius is 50 times perihelion. How do you reconcile your answer with energy conservation?

(d) If the comet had the same total energy but described a circular orbit, at what radius would it orbit, and how would its angular momentum compare with the value of part (a)?

(e) Relate your observations to the division of kinetic energy in hydrogen electron orbits of the same nbut different I.

At heart, momentum conservation is related to the universe being "translationally invariant," meaning that it is the same if you shift your coordinates to the right or left. Angular momentum relates to rotational invariance. Use these ideas to explain at least some of the differences between the physical properties quantized in the cubic three-dimensional box versus the hydrogen atom.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free