Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Mathematically equation (7-22) is the same differential equation as we had for a particle in a box-the function and its second derivative are proportional. But(ϕ)for m1= 0is a constant and is allowed, whereas such a constant wave function is not allowed for a particle in a box. What physics accounts for this difference?

Short Answer

Expert verified

The wave function m1= 0, which has no dependence and satisfies the condition without forcing anything to be zero everywhere.

Step by step solution

01

Significance of quantum numbers

The quantum number is used to describe the trajectory as well as the movement of the electron in an atom. According to the Pauli Exclusion principal, no electron in an atom can have same set of the quantum numbers.

02

Explanation of physics accounts for the difference

In case of the hydrogen atom and other particles in the spherical well, no barrier is encountered by varying the azimuthal angle over the complete range of values from 0 to 2. The wave function is not required to be zero that is encountered and the requirement instead is only that wave function at any angle must return to the same value at an angle that is greater. The wave function for m1 = 0, which has no dependence, already satisfies the condition without forcing anything to be zero everywhere.

Therefore, the wave function m1 = 0 , which has no dependence, and satisfies the condition without forcing anything to be zero everywhere.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A wave function with a non-infinite wavelength-however approximate it might be- has nonzero momentum and thus nonzero kinetic energy. Even a single "bump" has kinetic energy. In either case, we can say that the function has kinetic energy because it has curvature- a second derivative. Indeed, the kinetic energy operator in any coordinate system involves a second derivative. The only function without kinetic energy would be a straight line. As a special case, this includes a constant, which may be thought of as a function with an infinite wavelength. By looking at the curvature in the appropriate dimension(s). answer the following: For a givenn,isthe kinetic energy solely

(a) radial in the state of lowest l- that is, l=0; and

(b) rotational in the state of highest l-that is, l=n-1?

For a hydrogen atom in the ground state. determine (a) the most probable location at which to find the electron and (b) the most probable radius at which to find the electron, (c) Comment on the relationship between your answers in parts (a) and (b).

Can the transition 2s1s in the hydrogen atom occur by electric dipole radiation? The lifetime of the 2 s is known to be unusual. Is it unusually short or long?

Question: The kinetic energy of hydrogen atom wave functions for which lis its minimum value of 0 is all radial. This is the case for the 1s and 2s states. The 2 p state has some rotational kinetic energy and some radial. Show that for very large n, the states of largest allowed lhave essentially no radial kinetic energy. Exercise 55 notes that the expectation value of the kinetic energy (including both rotational and radial) equals the magnitude of the total energy. Compare this magnitude with the rotational energy alone,L2/2mr2
,assuming that n is large. That lis as large as it can be, and thatrn2a0.

Exercise 81 obtained formulas for hydrogen like atoms in which the nucleus is not assumed infinite, as in the chapter, but is of mass, m1while m2is the mass of the orbiting negative charge. (a) What percentage error is introduced in the hydrogen ground-state energy by assuming that the proton is of infinite mass? (b) Deuterium is a form of hydrogen in which a neutron joins the proton in the nucleus, making the nucleus twice as massive. Taking nuclear mass into account, by what percent do the ground-state energies of hydrogen and deuterium differ?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free