Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A study of classical waves tells us that a standing wave can be expressed as a sum of two travelling waves. Quantum-Mechanical travelling waves, discussed in Chapter 4, is of the form ψ(x,t)=Aei(kx=ωt). Show that the infinite well’s standing wave function can be expressed as a sum of two traveling waves.

Short Answer

Expert verified

ψ(x,t)=2Aisin(kx)e-iex

What we ended up with is the indefinite-well’s standing-wave function, thus proving it is just the sum of two waves moving in opposite directions.

Step by step solution

01

Step (1): Introduction

To show that the infinite well’s standing-wave function can be expressed as the sum of two travelling waves, we add two waves moving in opposite directions.

02

Step (2): Finding sum of two waves

The equation for each wave is

ψ(x,t)=Aei(kx-ωt)

Since our two waves are moving in opposite directions, they have opposite momentum(so our second wave is negative) and an opposite sign for K. This gives us equation for the sum of the travelling waves:

ψ(x,t)=Ae(kx-ωt)

So,role="math" localid="1658425779738" ψ(x,t)=Aei(kx-ωt)-Aei(kx-ωt)=Aei(kx-ωt)eikx-e-ikx=2Aieikx-e-ikx2ieiex

We know that,

eikx-e-ikx2i=sinkx

Thus,

ψ(x,t)=2Aisin(kx)e-iex

What we ended up with is the indefinite-well’s standing-wave function, thus proving it is just the sum of two waves moving in opposite directions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We learned that to be normalizable, a wave function must not itself diverge and must fall to 0 faster than |x|-1/2as x get large. Nevertheless. We find two functions that slightly violate these requirements very useful. Consider the quantum mechanical plane wave Aei(kx-ax)and the weird functionΨx0(x)pictured which we here call by its proper name. the Dirac delta function.

(a) Which of the two normalizability requirements is violated by the plane wave, and which by Dirac delta function?

(b) Normalization of the plane wave could be accomplished if it were simply truncated, restricted to the region -b<x<+bbeing identically 0 outside. What would then be the relationship between b and A, and what would happen to A as b approaches infinity?

(c) Rather than an infinitely tall and narrow spike like the Dirac delta function. Consider a function that is 0 everywhere except the narrow region-E<x<+ where its value is a constant B. This too could be normalized, What would be the relationship between s and B, and what would happen to B as s approaches 0? (What we get is not exactly the Dirac delta function, but the distinction involves comparing infinities, a dangerous business that we will avoid.)

(d) As we see, the two "exceptional" functions may be viewed as limits of normalizable ones. In those limits, they are also complementary to each other in terms of their position and momentum uncertainties. Without getting into calculations, describe how they are complementary.

Calculate the expectation value of the position of the particle.

A particle is described by the wave function

ψ(x)=2/Πx2-x+1.25

(a) Show that the normalization constant2/Πis correct.

(b) A measurement of the position of the particle is to be made. At what location is it most probable that the particle would be found?

(c) What is the probability per unit length of finding the particle at this location?

Figure 5.15 shows that the allowed wave functions for a finite well whose depth U0was chosen to be6π2/mL2.

(a) Insert this value in equation (5-23), then using a calculator or computer, solve for the allowed value of kL, of which there are four.

(b) Usingk=2mEfind corresponding values of E. Do they appear to agree with figure 5.15?

(c) Show that the chosenU0implies that α12π2L2k2.

(d) DefiningLandCto be 1 for convenience, plug your KLand αvalues into the wave function given in exercise 46, then plot the results. ( Note: Your first and third KLvalues should correspond to even function of z, thus using the form withCOSKZ, while the second and forth correspond to odd functions. Do the plots also agree with Figure 5.15?

A comet in an extremely elliptical orbit about a star has, of course, a maximum orbit radius. By comparison, its minimum orbit radius may be nearly 0. Make plots of the potential energy and a plausible total energyversus radius on the same set of axes. Identify the classical turning points on your plot.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free