Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The quantized energy levels in the infinite well get further apart as n increases, but in the harmonic oscillator they are equally spaced.

  1. Explain the difference by considering the distance “between the walls” in each case and how it depends on the particles energy
  2. A very important bound system, the hydrogen atom, has energy levels that actually get closer together as n increases. How do you think the separation between the potential energy “walls” in this system varies relative to the other two? Explain.

Short Answer

Expert verified

As energy increases, the energy levels move closer and hence wavelength becomes smaller.

Step by step solution

01

 Energy of harmonic oscillator

  1. The energy spacing is equal to n+12hω. The ground state energy is larger than zero in a harmonic oscillator as n increases, the walls become further apart. But the energy of the oscillator is limited to certain values and hence allowed quantized energy levels are equally spaced.
    Higher energy states have higher total energies and hence the classical limits to amplitude of the displacement will be larger for these states. Thus, they have shorter wavelengths.
02

Explanation

(b) Since energy varies as n increases, the walls move apart and so the energy levels come closer to each other.Thus, the energy gap will be smaller and energy increases faster than the harmonic oscillator

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

To describe the matter wave, does the function Asin(kx)cosωthave well-defined energy? Explain

We learned that to be normalizable, a wave function must not itself diverge and must fall to 0 faster than |x|-1/2as x get large. Nevertheless. We find two functions that slightly violate these requirements very useful. Consider the quantum mechanical plane wave Aei(kx-ax)and the weird functionΨx0(x)pictured which we here call by its proper name. the Dirac delta function.

(a) Which of the two normalizability requirements is violated by the plane wave, and which by Dirac delta function?

(b) Normalization of the plane wave could be accomplished if it were simply truncated, restricted to the region -b<x<+bbeing identically 0 outside. What would then be the relationship between b and A, and what would happen to A as b approaches infinity?

(c) Rather than an infinitely tall and narrow spike like the Dirac delta function. Consider a function that is 0 everywhere except the narrow region-E<x<+ where its value is a constant B. This too could be normalized, What would be the relationship between s and B, and what would happen to B as s approaches 0? (What we get is not exactly the Dirac delta function, but the distinction involves comparing infinities, a dangerous business that we will avoid.)

(d) As we see, the two "exceptional" functions may be viewed as limits of normalizable ones. In those limits, they are also complementary to each other in terms of their position and momentum uncertainties. Without getting into calculations, describe how they are complementary.

Consider a particle bound in a infinite well, where the potential inside is not constant but a linearly varying function. Suppose the particle is in a fairly high energy state, so that its wave function stretches across the entire well; that is isn’t caught in the “low spot”. Decide how ,if at all, its wavelength should vary. Then sketch a plausible wave function.

Prove that the transitional-state wave function (5.33) does not have a well-defined energy.

Determine the expectation value of the position of a harmonic oscillator in its ground state.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free