Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: The photons emitted by an LED arise from the energy given up in electron-hole recombinations across the energy gap. How large should the energy gap be to give photons at the red end of the visible spectrum (700nm) ?

Short Answer

Expert verified

Answer

The energy gap to give photons at the red end of the visible spectrum is 1.8 eV .

Step by step solution

01

Given data 

Wavelength of emitted photons, λ=700nm.

02

Concept of photon energy 

Energy corresponding to wavelength of photon is,E=hcλ .

Where, h is Planck's constant =6.64×10-34J·s.

C Is velocity of light=3×108m/s .

03

Step 3:Determine the energy gap to give photons at the red end of the visible spectrum

Substitute numerical values in photon energy equation.

E=6.64×10-34J·s×3×108m/s700×10-9m=0.0284×10-17J=1.8eV

The energy gap to give photons at the red end of the visible spectrum is 1.8eV

.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: Volumes have been written on transistor biasing, but Figure 10.45 gets at the main idea. Suppose that and that the "input" produces its own voltage . The total resistance is in the input loop, which goes clockwise from the emitter through the various components to the base, then back to the emitter through the base-emitter diode. this diode is forward biased with the base at all times 0.7 V higher than the emitter. Suppose also that Vcc = 12 V and that the "out- put" is350KΩ . Now. given that for every 201 electrons entering the emitter, I passes out the base and 200 out the collector, calculate the maximum and minimum in the sinusoidally varying

(a) Current in the base emitter circuit.

(b) Power delivered by the input.

(c) Power delivered to the output.

(d) Power delivered byVce.

(e) what does most of the work.

What is Cooper pair, and what role does it play in superconductivity?

Question:If electrical conductivity were determined by the mere static presence of positive ions rather than by their motion the collision time would be inversely proportional to the electron's average speed. If however, it were dominated by the motion of the ions, it should be inversely proportional to the “area" presented by a jiggling ion, which is in turn proportional to the square of its amplitude as an oscillator. Argue that only the latter view gives the correct temperature dependence in conductors of σT-1. Use the equipartition theorem (usually covered in introductory thermodynamics and also discussed in Section 9.9).

The diagram shows a bridge rectifier circuit. A sinusoidal input voltage is fed into four identical diodes. each represented by the standard diode circuit symbol. The symbol indicates the direction of conventional current flow through the diode. The plots show input and output voltages versus time. Note that the output voltage is strictly in one direction. Explain

(a) how this circuit produces the unidirectional output voltage it does, and

(b) what features in the output plot indicate that the band gap of the diodes is about half an electronvolt, (It might seem that about one volt is correct, but consider how many diodes are on and in series at any given instant. In fact, although not the usual habit, it might be more accurate to plot the output voltage shifted upward relative to the input.)

By the “vector” technique of example 10.1 , show that the angles between all lobes of the hybridsp3states are 109.5°..

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free