Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Of N2, O2 and F2, none has an electric dipole moment, but one does have a magnetic dipole moment, which one, and why?

(Refer to figure 10.10)

Short Answer

Expert verified

Here, O2 has a dipole moment.

Step by step solution

01

Dipole moment’s definition

The polarity of the system is called the electric dipole moment. The electric dipole moment is a measure of the separation of positive and negative charges in a system.

The magnetic dipole moment is used to measure the tendency of an object to interact with an external magnetic field.

02

Explanation of why O2  molecule has a magnetic dipole momentum

Oxygen O2 has a magnetic dipole momentum molecule because it has two outermost electrons that spin that are unpaired in π×2p. In nitrogen N2 and fluorine F2 molecules, the electrons have spins in opposite pairs, and so the magnetic moment cancels each other.

Hence, the molecule oxygen O2 molecule has a magnetic dipole moment.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Exercise 29 outlines how energy may be extracted by transferring an electron from an atom that easily loses an electron from an atom that easily loses an electron to one with a large appetite for electrons , then allowing the two to approach , forming an ionic bond.

  1. Consider separately the cases of hydrogen bonding with fluorine and sodium bonding with fluorine in each case , how close must the ions approach to reach “break even” where the energy needed to transfer the electron between the separated atoms is balanced by the electrostatic potential energy of attraction? The ionization energy of hydrogen is 13.6 eV , that of sodium is 5.1 eV , and the electron affinity of fluorine is 3.40 Ev.
  2. Of HF and NaF , one is considered to be an ionic bond and the other a covalent bond . Which is which and Why?

Carbon(diamond) and silicon have the same covalent crystal structure, yet diamond is transparent while silicon is opaque to visible light. Argue that this should be the case based only on the difference in band gaps roughly 5 eV for diamond in eV is silicon.

The "floating magnet trick" is shown in Figure 10.50. If the disk on the bottom were a permanent magnet, rather than a superconductor, the trick wouldn't work. The superconductor does produce an external field very similar to that of a permanent magnet. What other characteristic is necessary to explain the effect? (Him: What happens when you hold two ordinary magnets so that they repel, and then you release one of them?)

In the boron atom, the single 2p electron does not completely fill any 2p spatial state, yet solid boron is not a conductor. What might explain this? (It may be helpful to consider again why beryllium is not an insulator.)

The energy necessary to break the ionic bond between a sodium ion and a fluorine ion is 4.99eV. The energy necessary to separate the sodium and fluorine ions that form the ionic NaFcrystal is 9.30eV per ion pair. Explain the difference qualitatively.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free