Chapter 9: Problem 69
This problem investigates what fraction of the available chayge must he tranferred from one conductor to another to produre a typical contact potential. (a) As a rough appnximation, treat the conductors as \(10 \mathrm{~cm} \times\) \(10 \mathrm{c} \mathrm{m}\) square plates \(2 \mathrm{~cm}\) apart - a parallel-plate capactor \(-\) so that \(q=C V\), where \(C=\varepsilon_{\mathrm{p}}\left(0.01 \mathrm{~m}^{2} / 0.02 \mathrm{~m}\right)\). How much charge must be iransferred from one plate to the other to produce a potential difference of \(2 \mathrm{~V}\) ? (b) Approximately what fruction would this be of the total number of conduction electrons in a \(100 \mathrm{~g}\) piece of copper, which has one conduction electron per atem?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.