Chapter 9: Problem 31
Show that equation \((9-16)\) follows from \((9-15)\) and \((9-10)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 9: Problem 31
Show that equation \((9-16)\) follows from \((9-15)\) and \((9-10)\).
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a gas of atoms that might serve as a laser medium but that is in equilibrium, with no population inversions. A photon gas coexists with the atoms. Would a photon whose energy is precisely the difference between two atomic energy states be more likely to be absorbed or to induce a stimulated emission or neither? We expect that in equilibrium the numbers of atoms at different levels and the number of photons of a given energy should be stable. Is your answer compatible?
A "cold" object, \(T_{1}=300 \mathrm{~K}\), is briefly put in contact with a "hot" object, \(T_{2} \simeq 400 \mathrm{~K}\), and \(60 \mathrm{~J}\) of heat flows from the hot object to the cold one. The objects are then separated, their temperatures having changed negligibly due to their large sizes. (a) What are the changes in entropy of each object and the system as a whole? (b) Knowing only that these objects are in contact and at the given temperatures, what is the ratio of the probabilities of their being found in the second (final) state W that of their being found in the first (initial) state? What does chis result suggest?
The fact that a laser's resonant cavity so effectively sharpens the wavelength can lead to the output of several closely spaced laser wavelengths, called longitudinal modes. Here we see how. Suppose the spontaneous emission serving as the seed for stimulated emission is of wavelength \(633 \mathrm{~nm}\), but somewhat fuzzy, with a line width of roughly \(0.001 \mathrm{~nm}\) either side of the central value. The resonant cavity is exactly \(60 \mathrm{~cm}\) kng. (a) How many wavelengths fit the standing-wave condition? (b) If only u single wavelength were desired. would changing the length of the cavity help? Explain.
Determine the relative probability of a gas molecule being within a small range of speeds around \(2 {\text {rms }}\) to being in the same range of speeds around \(v {_\text {rms }}\).
Four distinguishable harmonic oscillators \(a, b, c,\) and \(d\) may exchange energy. The energies allowed particle \(a\) are \(E_{a}=n_{d} h \omega_{0} ;\) those allowed particle \(b\) are \(E_{b}=n_{b} h \omega_{0}\) and so \(\mathrm{cm}\). Consider an overall state (macrustate) in which the total energy is \(3 \hbar \omega_{0}\). One possible microstate would have particles \(\alpha\) b. and \(c\) ' in their \(n=0\) states and particle \(d\) in its \(n=3\) state: that is, \(\left(n_{u}, n_{b}, n_{c}, n_{d}\right)=(0,0,0,3)\) (a) List all possible microstates. (b) What is the probability that a given particle will be in its \(n=0\) state? (c) Answer par (b) for all other possible values of \(n\). (d) Plot the probability versus \(n\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.