Chapter 8: Problem 85
The 21 cm Line: One of the most important windows to the mysteries of the cosmos is the 21 cm line. With it, astronomers map hydrogen throughout the universe. An important trait is that it involves a highly forbidden transition that is, accordingly, quite long-lived. But it is also an excellent example of the coupling of angular momenta. Hydrogen's ground state has no spin-orbit interaction - for \(\boldsymbol{\theta}=0,\) there is no orbit. However, the proton and electron magnetic moments do interact. Consider the following simple model. (a) The proton sees itself surrounded by a spherically symmetric cloud of Is electron, which has an intrinsic magnetic dipole moment/spin that, of course, has a direction. For the purpose of investigating its effect on the proton, treat this dispersed magnetic moment as behaving effectively like a single loop of current whose radius is \(a_{0}\), then find the magnetic tield at the middle of the loop in tenns of \(e, h, m_{e}, \mu_{0},\) and \(a_{0} .\) (b) The proton sits right in the middle of the electron's magnetic moment. Like the electron. the proton is a spin- \(\frac{1}{2}\) particle, with only two possible orientations in a magnetic field. Noting, however, that its spin and magnetic moment are parallel rather than opposite, would the interaction energy be lower with the proton's spin aligned or antialigned with that of the electron'? (c) For the proton, \(g_{p}\) is \(5.6 .\) Obtain a rough value for the energy difference between the two orientations. (d) What would be the wavelength of a photon that carries away this energy difference?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.