Chapter 3: Problem 72
According to the energy-lime uncertainty principle. the lifetime \(\Delta f\) of a state and the uncertainty \(\Delta E\) in its energy are inversely proportional. Hydrogen's \(656 \mathrm{~nm}\) red spectral line is the result of an electron making a transition "downward" from a quantum state whose lifetime is about \(10^{-8} s\) (a) What inherent uncertainty in the energy of the emitted photon docs this imply? (Note: Unfortunately. we might use the symbol \(\Delta E\) for the energy difference - i.e., the energy of the photon - but here if means the uncertain in that energy difference.) (b) To what range in wavelengths does this correspond? (As noted in Exercise \(2.57\). the uncertainty principle is one contributor to the broadening of spectral lines.) (c) Obtain a general formula relating \(\Delta \lambda\) to \(\Delta t\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.