Chapter 2: Problem 117
Both classically and relativistically, the force on an object is what causes a time rate of change of its momentum: \(F=d p / d t\). (a) Using the relativistically cotrect expression for momentum, show that $$ F=\gamma_{u}^{3} m \frac{d u}{d l} $$ (b) Under what condition does the classical equation \(F=m a\) hold? \(?\) (c) Assuming a constant force and that the speed is zero at \(t=0\), separate \(t\) and \(u\), then integrate to show that $$ u=\frac{1}{\sqrt{1+(F t / m c)^{2}}} \frac{F}{m} t $$ (d) Plot \(u\) versus \(t\). What happens to the velocity of an object when a constant force is applied for an indefinite length of time?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.