Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A uniform-density disk whose mass is 10 kg and radius is 0.4 m makes one complete rotation every 0.2 s. What is the rotational kinetic energy of the disk?

Short Answer

Expert verified

The rotational kinetic energy is, 394.78 J.

Step by step solution

01

Identification of the given data

The given data can be listed below as,

  • The mass of disk is, m = 10 kg.
  • The radius of disk is, r =0.4 m.
  • The rotation period is, T =0.2 s.
02

Significance of rotational kinetic energy

The rotational energy, or angular kinetic energy, is the kinetic energy due to the rotation of an object and is a fraction of the total kinetic energy.

03

Determination of the rotational kinetic energy

The relation of rotational kinetic energy is expressed as,

Krot=12Iω2 ...(i)

Here Krotis the rotational kinetic energy, ωis the angular speed and Iis the moment of inertia.

The value of the moment of inertia and angular velocity for the disk is expressed as,

I=12mr2

And

ω=2πT

Here m is the mass of disk, r is the radius of disk and T is the rotation period.

Substitute the value of T and ωin the equation (i).

Krot=1212mr22πT2Krot=14mr22πT2

Substitute 10 kg for m, 0.4 m for r ,and 0.2 s for Tin the above equation.

Krot=14×10kg×0.4m22πT2=394.78J

Hence the rotational kinetic energy is, 394.78J.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Three uniform-density spheres are positioned as follows:

  • A3kg sphere is centered at <10,20,-5>m.
  • A 5kgsphere is centered at <4,-15,8>m.
  • A 6kgsphere is centered at <-7,10,9>m.

What is the location of the center of mass of this three-sphere system?

A solid uniform-density sphere is tied to a rope and moves in a circle with speed v. The distance from the center of the circle to the center of the sphere is d, the mass of the sphere is M, and the radius of the sphere is R. (a) What is the angular speed ω? (b) What is the rotational kinetic energy of the sphere? (c) What is the total kinetic energy of the sphere?

A runner whose mass is 50 kgaccelerates from a stop to a speed of10 m / s in 3 s. (A good sprinter can run100 m in about 10 s, with an average speed of 10 m / s.) (a) What is the average horizontal component of the force that the ground exerts on the runner’s shoes? (b) How much displacement is there of the force that acts on the sole of the runner’s shoes, assuming that there is no slipping? Therefore, how much work is done on the extended system (the runner) by the force you calculated in the previous exercise? How much work is done on the point particle system by this force? (c) The kinetic energy of the runner increases—what kind of energy decreases? By how much?

Tarzan, whose mass is 100kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets go, his center of mass is at a height 2.9m above the ground and the bottom of his dangling feet are at a height 2.1 above the ground. When he first hits the ground he has dropped a distance 2.1, so his center of mass is (2.9-2.1) above the ground. Then his knees bend and he ends up at rest in a crouched position with his center of mass a height above the ground. (a) Consider the point particle system. What is the speed v at the instant just before Tarzan's feet touch the ground? (b) Consider the extended system. What is the net change in internal energy for Tarzan from just before his feet touch the ground to when he is in the crouched position?

A box and its contents have a total massM. A string passes through a hole in the box (Figure9.57), and you pull on the string with a constant forceF(this is in outer space—there are no other forces acting).


(a) Initially the speed of the box wasvi. After the box had moved a long distancew, your hand had moved an additional distanced(a total distance ofw+d), because additional string of lengthdcame out of the box. What is now the speedviof the box? (b) If we could have looked inside the box, we would have seen that the string was wound around a hub that turns on an axle with negligible friction, as shown in Figure9.58. Three masses, each of mass, are attached to the hub at a distancerfrom the axle. Initially the angular speed relative to the axle wasω1. In terms of the given quantities, what is the final angular speed relative to the axis,ωf?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free