Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Discuss qualitatively the motion of the atoms in a block of steel that falls onto another steel block. Why and how do large-scale vibrations damp out?

Short Answer

Expert verified

When the atoms in the steel block fall into another steel block, then the particles mainly behave in the waveform. The large-scale vibrations damp out through the inner friction which mainly translates into heat. A small amount of dissipation may turn into radiation and sound.

Step by step solution

01

Significance of the translational motion and the law of vibration

The atoms can easily move from one position to another position which is referred to as the translational motion of the atoms.

The law of vibration illustrates that every single particle in this universe is in a constant movement state.

The motion of the atoms can be predicted by the translational motion and the law of vibrations gives the reason for the damping out of the vibrations.

02

Determination of the atom’s motion and damping out the vibrations

As a steel block is treated as a rigid object, hence it is a multiparticle system. However, while collision, the particles mainly acquire kinetic energy and transfer the energy into a waveform that eventually creates vibration.

As materials have a type of damping effect, hence, the kinetic energy gets transformed into heat for the friction that exists between the materials. However, due to the loss of energy, the amplitude of the wave decreases with time. Hence, the property of the materials for which the oscillations are damped due to the inner friction is mainly called hysteretic damping.

Hysteretic damping is mainly used for dissipating energy. A small amount of energy may be dissipated in radiation and sound form.

Thus, when the atoms in the steel block fall into another steel block, then the particles mainly behave in the waveform. The large-scale vibrations damp out through the inner friction which mainly translates into heat. A small amount of dissipation may turn into radiation and sound.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A box contains machinery that can rotate. The total mass of the box plus the machinery is7kg. A string wound around the machinery comes out through a small hole in the top of the box. Initially the box sits on the ground, and the machinery inside is not rotating (left side of Figure 9.61). Then you pull upward on the string with a force of constant magnitude . At an instant when you have pulled 0.6mof string out of the box (indicated on the right side of Figure 9.61), the box has risen a distance of 0.2 mand the machinery inside is rotating.


POINT PARTICLE SYSTEM (a) List all the forms of energy that change for the point particle system during this process. (b) What is theycomponent of the displacement of the point particle system during this process? (c) What is the ycomponent of the net force acting on the point particle system during this process? (d) What is the distance through which the net force acts on the point particle system? (e) How much work is done on the point particle system during this process? (f) What is the speed of the box at the instant shown in the right side of Figure 9.61? (g) Why is it not possible to find the rotational kinetic energy of the machinery inside the box by considering only the point particle system?

EXTENDED SYSTEM (h) the extended system consists of the box, the machinery inside the box, and the string. List all the forms of energy that change for the extended system during this process. (i) What is the translational kinetic energy of the extended system, at the instant shown in the right side of Figure 9.61? (j) What is the distance through which the gravitational force acts on the extended system? (k) How much work is done on the system by the gravitational force? (I) what is the distance through which your hand moves? (m) How much work do you do on the extended system? (n) At the instant shown in the right side of Figure 9.61, what is the total kinetic energy of the extended system? (o) what is the rotational kinetic energy of the machinery inside the box?

You hang by your hands from a tree limb that is a heightabove the ground, with your center of mass a heightabove the ground and your feet a heightabove the ground, as shown in Figure 9.56. You then let yourself fall. You absorb the shock by bending your knees, ending up momentarily at rest in a crouched position with your center of mass a heightabove the ground. Your mass is M. You will need to draw labeled physics diagrams for the various stages in the process.

(a) What is the net internal energy change โˆ†Eintin your body (chemical plus thermal)? (b) What is your speed vat the instant your feet first touch the ground? (c) What is the approximate average force Fexerted by the ground on your feet when your knees are bending? (d) How much work is done by this force,F?

It is sometimes claimed that friction forces always slow an object down, but this is not true. If you place a box of mass Mon a moving horizontal conveyor belt, the friction force of the belt acting on the bottom of the box speeds up the box. At first there is some slipping, until the speed of the box catches up to the speed vof the belt. The coefficient of friction between box and belt isฮผ. (a) What is the distance d(relative to the floor) that the box moves before reaching the final speed v? Use energy arguments, and explain your reasoning carefully. (b) How much time does it take for the box to reach its final speed? (c) The belt and box of course get hot. Is the effective distance through which the friction force acts on the box greater than or less than d? Give as quantitative an argument as possible. You can assume that the process is quick enough that you can neglect transfer of energyQ due to a temperature difference between the belt and the box. Do not attempt to use the results of the friction analysis in this chapter; rather, apply the methods of that analysis to this different situation. (d) Explain the result of part (c) qualitatively from a microscopic point of view, including physics diagrams.E

Two people with different masses but equal speeds slide toward each other with little friction on ice with their arms extended straight out to the slide (so each has the shape of a โ€œIโ€). Her right hand meets his right hand, they hold hands and spin 90ยฐ, then release their holds and slide away. Make a rough sketch of the path of the center of mass of the system consisting of the two people, and explain briefly. (It helps to mark equal time intervals along the paths of the two people and of their center of mass.)

Two identical 0.4 kgblock (labeled 1 and 2) are initially at rest on a nearly frictionless surface, connected by an unstretched spring, as shown in the upper portion of Figure 9.59.

Then a constant force of 100 N to the right is applied to block 2 and at a later time the blocks are in the new positions shown in the lower portion of Figure 9.59.9.59. At this final time, the system is moving to the right and also vibrating, and the spring is stretched. (a) The following questions apply to the system modeled as a point particle. (i) What is the initial location of the point particle? (ii) How far does the point particle move? (iii) How much work was done on the particle? (iv) What is the change in translational kinetic energy of this system? (b) The following questions apply to the system modeled as an extended object. (1) How much work is done on the right-hand block? (2) How much work is done on the left-hand block? (3) What is the change of the total energy of this system? (c) Combine the results of both models to answer the following questions. (1) Assuming that the object does not get hot, what is the final value of Kvib+Uspringfor the extended system? (2) If the spring stiffness is 50 N/m, what is the final value of the vibrational kinetic energy?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free