Chapter 9: Q18P (page 378)
If an object’s rotational kinetic energy is 50 J and it rotates with an angular speed of 12 rad/s, what is the moment of inertia?
Short Answer
The moment of inertia is, .
Chapter 9: Q18P (page 378)
If an object’s rotational kinetic energy is 50 J and it rotates with an angular speed of 12 rad/s, what is the moment of inertia?
The moment of inertia is, .
All the tools & learning materials you need for study success - in one app.
Get started for freeTarzan, whose mass is 100kg, is hanging at rest from a tree limb. Then he lets go and falls to the ground. Just before he lets go, his center of mass is at a height 2.9m above the ground and the bottom of his dangling feet are at a height 2.1 above the ground. When he first hits the ground he has dropped a distance 2.1, so his center of mass is (2.9-2.1) above the ground. Then his knees bend and he ends up at rest in a crouched position with his center of mass a height above the ground. (a) Consider the point particle system. What is the speed v at the instant just before Tarzan's feet touch the ground? (b) Consider the extended system. What is the net change in internal energy for Tarzan from just before his feet touch the ground to when he is in the crouched position?
You hang by your hands from a tree limb that is a heightabove the ground, with your center of mass a heightabove the ground and your feet a heightabove the ground, as shown in Figure 9.56. You then let yourself fall. You absorb the shock by bending your knees, ending up momentarily at rest in a crouched position with your center of mass a heightabove the ground. Your mass is M. You will need to draw labeled physics diagrams for the various stages in the process.
(a) What is the net internal energy change in your body (chemical plus thermal)? (b) What is your speed vat the instant your feet first touch the ground? (c) What is the approximate average force Fexerted by the ground on your feet when your knees are bending? (d) How much work is done by this force,F?
Discuss qualitatively the motion of the atoms in a block of steel that falls onto another steel block. Why and how do large-scale vibrations damp out?
A uniform-density disk of mass 13 kg, thickness 0.5 m. and radius 0.2 m make one complete rotation every 0.6 s. What is the rotational kinetic energy of the disk?
A chain of metal links with total mass M = 7 kg is coiled up in a tight ball on a low-friction table (Figure 9.52). You pull on a link at one end of the chain with a constant force F= 50 N. Eventually the chain straightens out to its full length = 2.6 m. and you keep pulling until you have pulled your end of the chain a total distance d=4.5 m.
(a) Consider the point particle system. What is the speed of the chain at this instant? (b) Consider the extended system. What is the change in energy of the chain? (c) In straightening out, the links of the chain bang against each other, and their temperature rises. Assume that the process is so fast that there is insufficient time for significant transfer of energy from the chain to the table due to the temperature difference, and ignore the small amountof energy radiated away as sound produced in the collisions among the links. Calculate the increase in internal energy of the chain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.