Chapter 9: Q16P (page 377)
Consider a system consisting of three particles:
What is, the kinetic energy of this system relative to the centre of mass?
Short Answer
The relative kinetic energy is,3038.97 J .
Chapter 9: Q16P (page 377)
Consider a system consisting of three particles:
What is, the kinetic energy of this system relative to the centre of mass?
The relative kinetic energy is,3038.97 J .
All the tools & learning materials you need for study success - in one app.
Get started for freeAgroup of particles of total mass has a total kinetic energy of . The kinetic energy relative to the center of mass is . What is the speed of the center of mass?
A chain of metal links with total mass M = 7 kg is coiled up in a tight ball on a low-friction table (Figure 9.52). You pull on a link at one end of the chain with a constant force F= 50 N. Eventually the chain straightens out to its full length = 2.6 m. and you keep pulling until you have pulled your end of the chain a total distance d=4.5 m.
(a) Consider the point particle system. What is the speed of the chain at this instant? (b) Consider the extended system. What is the change in energy of the chain? (c) In straightening out, the links of the chain bang against each other, and their temperature rises. Assume that the process is so fast that there is insufficient time for significant transfer of energy from the chain to the table due to the temperature difference, and ignore the small amountof energy radiated away as sound produced in the collisions among the links. Calculate the increase in internal energy of the chain.
A uniform-density 6 kg disk of radius 0.3 m is mounted on a nearly frictionless axle. Initially it is not spinning. A string is wrapped tightly around the disk, and you pull on the string with a constant force of 25 N through a distance of 0.6 m. Now what is the angular speed?
A uniform-density disk of mass 13 kg, thickness 0.5 m. and radius 0.2 m make one complete rotation every 0.6 s. What is the rotational kinetic energy of the disk?
You pull straight up on the string of a yo-yo with a force 0.235 N, and while your hand is moving up a distance 0.18 m, the yo-yo moves down a distance 0.70 m. The mass of the yo-yo is 0.025 kg, and it was initially moving downward with speed 0.5 m/s and angular speed 124 rad/s. (a) What is the increase in the translational kinetic energy of the yo-yo? (b) What is the new speed of the yo-yo? (c) What is the increase in the rotational kinetic energy of the yo-yo? (d) The yo-yo is approximately a uniform-density disk of radius 0.02 m. What is the new angular speed of the yo-yo?
What do you think about this solution?
We value your feedback to improve our textbook solutions.