Chapter 9: Q14P (page 377)
Agroup of particles of total mass has a total kinetic energy of . The kinetic energy relative to the center of mass is . What is the speed of the center of mass?
Short Answer
The speed of the center of mass is
Chapter 9: Q14P (page 377)
Agroup of particles of total mass has a total kinetic energy of . The kinetic energy relative to the center of mass is . What is the speed of the center of mass?
The speed of the center of mass is
All the tools & learning materials you need for study success - in one app.
Get started for freeIt is sometimes claimed that friction forces always slow an object down, but this is not true. If you place a box of mass Mon a moving horizontal conveyor belt, the friction force of the belt acting on the bottom of the box speeds up the box. At first there is some slipping, until the speed of the box catches up to the speed vof the belt. The coefficient of friction between box and belt is. (a) What is the distance d(relative to the floor) that the box moves before reaching the final speed v? Use energy arguments, and explain your reasoning carefully. (b) How much time does it take for the box to reach its final speed? (c) The belt and box of course get hot. Is the effective distance through which the friction force acts on the box greater than or less than d? Give as quantitative an argument as possible. You can assume that the process is quick enough that you can neglect transfer of energyQ due to a temperature difference between the belt and the box. Do not attempt to use the results of the friction analysis in this chapter; rather, apply the methods of that analysis to this different situation. (d) Explain the result of part (c) qualitatively from a microscopic point of view, including physics diagrams.E
A box contains machinery that can rotate. The total mass of the box plus the machinery is. A string wound around the machinery comes out through a small hole in the top of the box. Initially the box sits on the ground, and the machinery inside is not rotating (left side of Figure 9.61). Then you pull upward on the string with a force of constant magnitude . At an instant when you have pulled 0.6mof string out of the box (indicated on the right side of Figure 9.61), the box has risen a distance of 0.2 mand the machinery inside is rotating.
POINT PARTICLE SYSTEM (a) List all the forms of energy that change for the point particle system during this process. (b) What is thecomponent of the displacement of the point particle system during this process? (c) What is the ycomponent of the net force acting on the point particle system during this process? (d) What is the distance through which the net force acts on the point particle system? (e) How much work is done on the point particle system during this process? (f) What is the speed of the box at the instant shown in the right side of Figure 9.61? (g) Why is it not possible to find the rotational kinetic energy of the machinery inside the box by considering only the point particle system?
EXTENDED SYSTEM (h) the extended system consists of the box, the machinery inside the box, and the string. List all the forms of energy that change for the extended system during this process. (i) What is the translational kinetic energy of the extended system, at the instant shown in the right side of Figure 9.61? (j) What is the distance through which the gravitational force acts on the extended system? (k) How much work is done on the system by the gravitational force? (I) what is the distance through which your hand moves? (m) How much work do you do on the extended system? (n) At the instant shown in the right side of Figure 9.61, what is the total kinetic energy of the extended system? (o) what is the rotational kinetic energy of the machinery inside the box?
You hang by your hands from a tree limb that is a heightabove the ground, with your center of mass a heightabove the ground and your feet a heightabove the ground, as shown in Figure 9.56. You then let yourself fall. You absorb the shock by bending your knees, ending up momentarily at rest in a crouched position with your center of mass a heightabove the ground. Your mass is M. You will need to draw labeled physics diagrams for the various stages in the process.
(a) What is the net internal energy change in your body (chemical plus thermal)? (b) What is your speed vat the instant your feet first touch the ground? (c) What is the approximate average force Fexerted by the ground on your feet when your knees are bending? (d) How much work is done by this force,F?
Show that moment of inertia of a disk of mass M and radius R is . Divide the disk into narrow rings, each of radius r and width dr. The contribution I of by one of these rings is r2dm, where dm is amount of mass contained in that particular ring. The mass of any ring is the total mass times the fraction of the total area occupied by the area of the ring. The area of this ring is approximately . Use integral calculus to add up all the calculations.
If an object has a moment of inertia and rotates with an angular speed of , what is its rotational kinetic energy?
What do you think about this solution?
We value your feedback to improve our textbook solutions.