Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If an object has a moment of inertia 19kg·m2 and rotates with an angular speed of 70rad/s, what is its rotational kinetic energy?

Short Answer

Expert verified

The rotational kinetic energy is4.6×104J

Step by step solution

01

Identification of the given data

  • The moment of inertia is I=19kg·m2
  • An angular speed of ω=70rad/s
02

Concept of rotational kinetic energy

The rotational kinetic energy means the kinetic energy due to the rotation of a System the system.

03

Determination of the rotational kinetic energy

The rotational kinetic energy,

Krot=12Iω2

Substitute Iand ωin the above equation, we get:

Krot=19kg·m22×70rad/s2=19×70×702·1kg·m2×1rad/s2×1J1kg·m2·rad2·s-2=4.6×104·1J=4.6×104J

Hence, the rotational kinetic energy is 4.6×104J

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A box and its contents have a total massM. A string passes through a hole in the box (Figure9.57), and you pull on the string with a constant forceF(this is in outer space—there are no other forces acting).


(a) Initially the speed of the box wasvi. After the box had moved a long distancew, your hand had moved an additional distanced(a total distance ofw+d), because additional string of lengthdcame out of the box. What is now the speedviof the box? (b) If we could have looked inside the box, we would have seen that the string was wound around a hub that turns on an axle with negligible friction, as shown in Figure9.58. Three masses, each of mass, are attached to the hub at a distancerfrom the axle. Initially the angular speed relative to the axle wasω1. In terms of the given quantities, what is the final angular speed relative to the axis,ωf?

You hold up an object that consists of two blocks at rest, each of massM=5kg, connected by a low-mass spring. Then you suddenly start applying a larger upward force of constant magnitudeF=167N(which is greater than2Mg). Figure9.60shows the situation some time later, when the blocks have moved upward, and the spring stretch has increased.

The heights of the centers of the two blocks are as follows:

Initial and final positions of block 1:y1i=0.3m,y1f=0.5m

Initial and final positions of block 2:y2i=0.7m,y2f=1.2m

It helps to show these heights on a diagram. Note that the initial center of mass of the two blocks isy1i+y1i/2, and the final center of mass of the two blocks isrole="math" localid="1656911769231" y1f+y1f/2. (a) Consider the point particle system corresponding to the two blocks and the spring. Calculate the increase in the total translational kinetic energy of the two blocks. It is important to draw a diagram showing all of the forces that are acting, and through what distance each force acts. (b) Consider the extended system corresponding to the two blocks and the spring. Calculate the increase of(Kvib+Us), the vibrational kinetic energy of the two blocks (their kinetic energy relative to the center of mass) plus the potential energy of the spring. It is important to draw a diagram showing all of the forces that are acting, and through what distance each force acts.

String is wrapped around an object of mass 1.5kg and moment of inertia 0.0015kg-m2(the density of the object is not uniform). With your hand you pull the string straight up with some constant force F such that the center of the object does not move up or down, but the object spins faster and faster (Figure 9.62). This is like a yo-yo; nothing but the vertical string touches the object. When your hand is a height y0=0.25mabove the floor, the object has an angular speed ω0=12rad/s. When your hand has risen to a height y=0.35m above the floor, what is the angular speed of the object? Your answer must be numeric and not contain the symbol F.

A uniform-density 6 kg disk of radius 0.3 m is mounted on a nearly frictionless axle. Initially it is not spinning. A string is wrapped tightly around the disk, and you pull on the string with a constant force of 25 N through a distance of 0.6 m. Now what is the angular speed?

A uniform-density disk whose mass is 10 kg and radius is 0.4 m makes one complete rotation every 0.2 s. What is the rotational kinetic energy of the disk?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free