Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two people with different masses but equal speeds slide toward each other with little friction on ice with their arms extended straight out to the slide (so each has the shape of a “I”). Her right hand meets his right hand, they hold hands and spin 90°, then release their holds and slide away. Make a rough sketch of the path of the center of mass of the system consisting of the two people, and explain briefly. (It helps to mark equal time intervals along the paths of the two people and of their center of mass.)

Short Answer

Expert verified

The velocity of the center of mass of the system is'v'm/s

Step by step solution

01

Identification of given data

  • The mass of the first person ism1
  • The mass of the second person is m2
  • The speed of both persons is v
02

Concept of the center of mass of the system

The center of mass of the system is calculated by considering the average positions of all the objects acting in the system.

03

Calculation of the velocity of the center of mass of the system

The velocity of the center of mass of the system

VCM=m1v1+m2v2m1+m2=m1v+m2vm1+m2=v.m1+m2m1+m2=v

Hence, the velocity of the center of mass of the system is 'v'm/s

04

Drawing the rough sketch of the path of the center of mass of the system

This is the rough sketch of the path of the center of mass of the system consisting of the two people.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: You hang by your hands from a tree limb that is a heightabove the ground, with your center of mass a heightabove the ground and your feet a heightabove the ground, as shown in Figure 9.56. You then let yourself fall. You absorb the shock by bending your knees, ending up momentarily at rest in a crouched position with your center of mass a heightabove the ground. Your mass is. You will need to draw labeled physics diagrams for the various stages in the process.

(a) What is the net internal energy change in your body (chemical plus thermal)? (b) What is your speedat the instant your feet first touch the ground? (c) What is the approximate average forceexerted by the ground on your feet when your knees are bending? (d) How much work is done by this force,?

A string is wrapped around a disk of mass 2.1 kg (its density is not necessarily uniform). Starting from rest, you pull the string with a constant force of 9 N along a nearly frictionless surface. At the instant when the center of the disk has moved a distance 0.11 m, your hand has moved a distance of 0.28 m (Figure 9.51).


(a) At this instant, what is the speed of the center of mass of the disk? (b) At this instant, how much rotational kinetic energy does the disk have relative to its center of mass? (c) At this instant, the angular speed of the disk is 75 rad/s. What is the moment of inertia of the disk?

A uniform-density sphere whose mass is 10kgand radius is 0.4mmakes one complete rotation every0.2s. What is the rotational kinetic energy of the sphere?

A solid uniform-density sphere is tied to a rope and moves in a circle with speed v. The distance from the center of the circle to the center of the sphere is d, the mass of the sphere is M, and the radius of the sphere isR. (a) What is the angular speed role="math" localid="1653899021129" ω? (b) What is the rotational kinetic energy of the sphere? (c) What is the total kinetic energy of the sphere?

A string is wrapped around a uniform disk of massM=1.2kgand radiusR=0.11m (Figure 9.63). Attached to the disk are four low-mass rods of radiusb=0.14m,, each with a small massm=0.4kgat the end (Figure 9.63). The device is initially at rest on a nearly frictionless surface. Then you pull the string with a constant forceF=21N. At the instant that the center of the disk has moved a distanced=0.026m, an additional lengthw=0.092mof string has unwound off the disk. (a) At this instant, what is the speed of the center of the apparatus? Explain your approach. (b) At this instant, what is the angular speed of the apparatus? Explain your approach.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free