Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider the three experiments described in Problem 30. Figure 2.58 displays four graphs of Fnet, x, the x component of the net force acting on the cart, vs. time. The graphs start when the cart is at rest, and end when the cart is again at rest. Match the experiment with the graph

Short Answer

Expert verified
  • The graph when the fan is off 6.
  • The graph when the fan is moving forward 7.
  • The graph when the fan is moving backward 5.

Step by step solution

01

Identification of given data

  • The graph starts when the cart is at rest and ends when the cart is again at rest.
02

Concept of change of momentum 

The difference between final and beginning momentum levels is called the change in momentum.The change in momentum is equal to the impulse.

The change of momentum can be given as,

Fnet=pt

03

Evaluation of graph between force and time

The area under force and time gives the change in momentum.

The first experiment is the initial state of the cart. Give it a little nudge, and it coasts for a long time in the +x direction down the track, eventually stopping.This situation can be depicted using graph 6.

In the second experiment the fan is turned on but the cart is held stationary and in some while when the hold is removed the cart starts to move in the +x direction the cart is stopped suddenly and it eventually comes to rest. This situation can be depicted using graph 7.

In the third experiment,the fan is facing the wrong direction initially the cart was held at rest. A brief push was given and it starts moving in +x direction, it slows down and returns to the starting position where the cart is held and stopped. The situation can be depicted using graph 5.

Thus, the graphsare being identified according to the experiment.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: the Hall effect can be used to determine the sign of the mobile charges in a particular conducting material. A bar of a new kind of conducting material is connected to a battery as shown in Figure 20.85. In this diagram, the x-axis runs to the right, the y-axis runs up, and the z-axis runs out of the page, toward you. A voltmeter is connected across the bar as shown, with the leads placed directly opposite each other along a vertical line. In order to answer the following question, you should draw a careful diagram of the situation, including all relevant charges, electric fields, magnetic fields, and velocities.

Initially, there is no magnitude filed in the region of the bar. (a) Inside the bar, what is the direction of the electric field Edue to the charges on the batteries and the surface of the wires and the bar? This is the electric field that drives the current in the bar. (b) If the mobile charges in the bar are positive in what direction do they move when the current runs? (c) If the mobile charges in the bar are negative, in what direction do they move when the current runs? (d) In this situation (zero magnetic fields), what is the sign of the reading on the voltmeter?

Next, large coils (not shown) are moved near the bar. And current runs through the coils, making a magnetic field in the -z direction (into the page). (e) If the mobile charges in the bar are negative, what is the direction of the magnetic force on the mobile charge? (f) If the mobile charges in the bar are negative, which of the following things will happen? (1) Positive charge will accumulate on the top of the bar. (2) The bar will not becomes polarized. (3) Negative charge will accumulate on the left end of the bar. (4) Negative charge will accumulate on the top of the bar. (g) If the mobile charges in the bar are positive, what is the direction of the magnetic force on the mobile charges? (h) If the mobile charges in the bar are positive, which of these things will happen? (1) positive charge will accumulate on the top of the bar. (2) The bar will not becomes polarized. (3) Positive charge will accumulate on the right end of the bar. (4) Negative charge will accumulate on the top of the bar.

You look at the voltmeter and find that the reading on the meter is -5×10-4volts. (i) What can you conclude from this observation? (Remember that a voltmeter gives a positive reading if the positive lead is attached to the higher potential location.) (1) There is not enough information to figure out the sign of the mobile charges. (2) The mobile charges are negative. (3) The mobile charges are positive.

You may have noticed that while discharging a capacitor through a light bulb, the light glows just about as brightly, and for just about as long, as it does while charging the same capacitor through the same bulb. Let Estand for the energy emitted by the light bulb (as light and heat) in the discharging phase, from just before the bulb is connected to the capacitor until the time when there is essentially no more current. In terms of +Eor -E, what was the energy change of the battery, capacitor, bulb, and surroundings during the charging phase, and during the discharging phase? One answer is already given in the following table:

It is somewhat surprising that we can get this much information out of one simple observation.

A driver starts from rest on a straight test track that has markers every0.1 Km. The driver press on the accelerator for the entire period of the test holds the car at constant acceleration. The car passes the0.1 Kmpost at 8 sec after starting the test. (a) What was the car’s acceleration? (b) What was the cars speed as it passed the 0.1 Km post? (c) What does the speedometer read at the post? (d) When does the car pass the 0.2 Km post?

(a) In figure 1.58, what are the components of the vector d?

A paddle ball toy consists of a flat wooden paddle and asmall rubber ball that are attached to each other by an elastic band (Figure 2.61). You have a paddle ball toy for which the mass of the ball is 0.015 kg, the stiffness of the elastic band is 0.9 N/m, and the relaxed length of the elastic band is 0.30 m. You are holding the paddle so the ball hangs suspended under it, when your cat comes along and bats the ball around, setting it in motion. At a particular instant the momentum of the ball is-0.02,-0.01,-0.02kgm/s , and the moving ball is at location -0.2,-0.61,0m relative to an origin located at the point where the elastic band is attached to the paddle.

(a) Determine the position of the ball 0.1 s later, Δtusing of 0.1 s.

(b) Starting with the same initial position

(-0.2,-0.61,0m)and momentum(-0.02,-0.01,-0.02kgm/s) , determine the position of the ball 0.1 s later, using a of 0.05 s. (c) If your answers are different, explain why.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free