Chapter 2: Q45P (page 45)
In gold at room temperature, the mobility of mobile electrons is about
Short Answer
The conductivity of gold is
Chapter 2: Q45P (page 45)
In gold at room temperature, the mobility of mobile electrons is about
The conductivity of gold is
All the tools & learning materials you need for study success - in one app.
Get started for freeA 0.7 kgblock of ice is sliding by you on a very slippery floor at
A tennis ball has a mass of 0.057kg.A professional tennis player hits the ball hard enough to give it a speed of 50 m/s (about 120 mi/h). The ball hits a wall and bounces back with almost the same speed (50m/s). As indicated in Figure 2.55 , high-speed photography shows that the ball is crushed 2 cm (0.02 m) at the instant when its speed is moment0arily zero, before rebounding.
Making the very rough approximation that the large force that the wall exerts on the ball is approximately constant during contact, determine the approximate magnitude of this force. Hint: Think about the approximate amount of time it takes for the ball to come momentarily to rest. (For comparison note that the gravitational force on the ball is quite small, only about (0.057 kg) (9.8 N/kg)
Two metal rods are made of different elements. The interatomic spring stiffness of element A is three times larger than the interatomic spring stiffness for element B. The mass of an atom of element A is three times greater than the mass of an atom of element B. The atomic diameters are approximately the same for A and B. What is the ratio of the speed of sound in rod A to the speed of sound in rod B?
Question: You drop a piece of paper, and observe that it eventually falls at a constant speed. Which of the following statements about this situation is based on a fundamental physics principle? (a) Because the paper is moving downward, we know that it experiences a nonzero net downward force. (b) Since the momentum of the paper does not change from one instant to the next,, and therefore the net force on the paper must be zero. (2) You give a push to a toy car, which rolls away smoothly on a wooden floor. Why does the car keep moving after your hand is no longer touching it? (a) The momentum of the car just after it leaves your hand reflects the total impulse given to the car by your hand. (b) Your hand continues to exert a force on the car even after the car and hand no longer touch.
You observe three carts moving to the left. Cart A moves to the left at nearly constant speed. Cart B moves to the left, gradually speeding up. Cart C moves to the left, gradually slowing down. Which cart or carts, if any, experience a net force to the left?
What do you think about this solution?
We value your feedback to improve our textbook solutions.