Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A particular AM radio station broadcasts at a frequency of 990kHz. (a) What is the wavelength of this electromagnetic radiation? (b) How much time is required for the radiation to propagate from the broadcasting antenna to a radio 3 km away?

Short Answer

Expert verified

The wavelength of the electromagnetic radiation is 303m.

Step by step solution

01

Write the given data from the question.

The frequency of the broadcast station,f=990kHz

02

Determine the formulas to calculate the wavelength of the electromagnetic radiation.

The expression to calculate the wavelength of the broadcast station is given as follows.

λ=vf …… (i)

Here, v is the speed of the light.

03

Calculate the wavelength of the electromagnetic radiation and time required to propagate the radiation.

Calculate the wavelength of the electromagnetic radiation.

Substitute 990kHz for f and3×108m/s for v into equation (i).

λ=3×108990×103λ=3000×102990λ=3.030×102λ=3.03m

Hence the wavelength of the electromagnetic radiation is 303m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Calculate the potential difference along the closed path consisting of two radial segments and two circular segments centred on the charge Q. Show that the four ΔV’s add up to zero. It is helpful to draw electric field vectors at several locations on each path segment to help keep track of signs.

At a certain instant a particle is moving in the +xdirection with momentum+8kg·m/s. During the next 0.13sa constant force acts on the particle, with Fx=-7N and xFy=+5N. What is the magnitude of the momentum of the particle at the end of this v interval?

Youobservethreecartsmovingtotheleft.CartAmovestotheleftatnearlyconstantspeed.CartBmovestotheleft,graduallyspeedingup.CartCmovestotheleft,graduallyslowingdown.Whichcartorcarts,ifany,experienceanetforcetotheleft?

A spherical satellite of approximately uniform density with radius\(4.8m\)and mass\(205kg\)is originally moving with velocity\(\left\langle {2600,0,0} \right\rangle m/s,\)and is originally rotating with an angular speed\(2rad/s,\)in the direction shown in the diagram. A small piece of space junk of mass\(4.1kg\)is initially moving toward the satellite with velocity\(\left\langle { - 2200,0,0} \right\rangle m/s.\)The space junk hits the edge of the satellite at location C as shown in Figure 11.97, and moves off with a new velocity\(\left\langle { - 1300,480,0} \right\rangle m/s.\)Both before and after the collision, the rotation of the space junk is negligible.

Question: An electron passes location (0.02,0.04,-0.06)m, and 2μslater is detected at location (0.02,1.84,-0.86)m, (1 microsecond is1×10-6s). a) What is the average velocity of the electron? b) If the electron continues to travel at this average velocity, where will it be in another 5μs?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free