Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A runner starts from rest and in3 sreaches a speed of . Assume that her speed changed at a constant rate (constant net force).

(a) What was her average speed during this 3 s interval?

(b) How far did she go in this 3 s interval?

Short Answer

Expert verified
  1. Average speed for the 3 s, vavg=4 m/s
  2. Distance travels=12 m .

Step by step solution

01

Identification of given data

  • Initial velocity vi=0.
  • Final velocity vf=8 m/s.
  • Time t=3 s.
02

Average speed

Average speed is the ratio of distance traveled per unit of time.

03

Calculation of the average speed

(a) The average speed of an object is calculated by

a=vfvit

Here, a = Acceleration , and t = Total time

a=83a=2.66 m/s

s=ut+12at2s=0×3 s+12×2.66 m/s×3 s2s=12 m

role="math" localid="1657104664252" v=stv=12 m3 s=4 m/s

The average speed will be 4 m/s.

04

Calculation for the distance travel

(b) See part a

The distance is traveled s=12 m.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question: The following questions refer to the circuit shown in Figure 18.114, consisting of two flashlight batteries and two Nichrome wires of different lengths and different thicknesses as shown (corresponding roughly to your own thick and thin Nichrome wires).

The thin wire is 50 cm long, and its diameter is 0.25 mm. The thick wire is 15 cm long, and its diameter is 0.35 mm. (a) The emf of each flashlight battery is 1.5 V. Determine the steady-state electric field inside each Nichrome wire. Remember that in the steady state you must satisfy both the current node rule and energy conservation. These two principles give you two equations for the two unknown fields. (b) The electron mobility

in room-temperature Nichrome is about 7×10-5(ms)(Ns). Show that it takes an electron 36 min to drift through the two Nichrome wires from location B to location A. (c) On the other hand, about how long did it take to establish the steady state when the circuit was first assembled? Give a very approximate numerical answer, not a precise one. (d) There are about 9×1028mobile electrons per cubic meter in Nichrome. How many electrons cross the junction between the two wires every second?

In the circuit shown in Figure 19.75, the emf of the battery is 7.9V. Resistor R1 has a resistance of 23Ω , and resistor R2 has a resistance of 44Ω . A steady current flows through the circuit. (a) What is the absolute value of the potential difference across R1? (b) What is the conventional current through R2?

In the circuit shown in Figure 19.77 the emf of the battery is 7.4V. Resistor R1has a resistance of 31Ω, resistor R2 has a resistance of 47Ω, and resistor localid="1662203602529" R3has a resistance of localid="1662203617219" 52Ω. A steady current flows through the circuit.

(a)What is the equivalent resistance of R1andR2 ? (b) What is the equivalent resistance of all three resistors? (c) What is the conventional current throughR3

A certain ohmic resistor has a resistance of 40Ω.A second resistor is made of the same material but is three times as long and has half the cross-sectional area. What is the resistance of the second resistor? What is the effective resistance of the two resistors in series?

You observe three carts moving to the left. Cart A moves to the left at nearly constant speed. Cart B moves to the left, gradually speeding up. Cart C moves to the left, gradually slowing down. Which cart or carts, if any, experience a net force to the left?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free