Chapter 2: Q18P (page 45)
(a) In figure 1.58, what are the components of the vector ?
Short Answer
(a) The component of the vector .
Chapter 2: Q18P (page 45)
(a) In figure 1.58, what are the components of the vector ?
(a) The component of the vector .
All the tools & learning materials you need for study success - in one app.
Get started for free(a) On a piece of graph paper, draw the vector , putting the tail of the vector at .Label the vector .
(1) Two external forces,(40,70,0)Nand (20,10,0)N, act on a system. What is the net force acting on the system? (2) A hockey puck initially has momentum (0,2,0)kg.m/s. It slides along the ice, gradually slowing down, until it comes to a stop. (a) What was the impulse applied by the ice and the air to the hockey puck? (b) It took 3 seconds for the puck to come to a stop. During this time interval, what was the net force on the puck by the ice and the air (assuming that this force was constant)?
Question: (1) Two external forces,and, act on a system. What is the net force acting on the system? (2) A hockey puck initially has momentum. It slides along the ice, gradually slowing down, until it comes to a stop. (a) What was the impulse applied by the ice and the air to the hockey puck? (b) It took 3 seconds for the puck to come to a stop. During this time interval, what was the net force on the puck by the ice and the air (assuming that this force was constant)?
Question: The following questions refer to the circuit shown in Figure 18.114, consisting of two flashlight batteries and two Nichrome wires of different lengths and different thicknesses as shown (corresponding roughly to your own thick and thin Nichrome wires).
The thin wire is 50 cm long, and its diameter is 0.25 mm. The thick wire is 15 cm long, and its diameter is 0.35 mm. (a) The emf of each flashlight battery is 1.5 V. Determine the steady-state electric field inside each Nichrome wire. Remember that in the steady state you must satisfy both the current node rule and energy conservation. These two principles give you two equations for the two unknown fields. (b) The electron mobility
in room-temperature Nichrome is about . Show that it takes an electron 36 min to drift through the two Nichrome wires from location B to location A. (c) On the other hand, about how long did it take to establish the steady state when the circuit was first assembled? Give a very approximate numerical answer, not a precise one. (d) There are about mobile electrons per cubic meter in Nichrome. How many electrons cross the junction between the two wires every second?
Question: The following questions refer to the circuit shown in Figure 18.114, consisting of two flashlight batteries and two Nichrome wires of different lengths and different thicknesses as shown (corresponding roughly to your own thick and thin Nichrome wires).
The thin wire is 50 cm long, and its diameter is 0.25 mm. The thick wire is 15 cm long, and its diameter is 0.35 mm. (a) The emf of each flashlight battery is 1.5 V. Determine the steady-state electric field inside each Nichrome wire. Remember that in the steady state you must satisfy both the current node rule and energy conservation. These two principles give you two equations for the two unknown fields. (b) The electron mobility
in room-temperature Nichrome is about . Show that it takes an electron 36 min to drift through the two Nichrome wires from location B to location A. (c) On the other hand, about how long did it take to establish the steady state when the circuit was first assembled? Give a very approximate numerical answer, not a precise one. (d) There are about mobile electrons per cubic meter in Nichrome. How many electrons cross the junction between the two wires every second?
What do you think about this solution?
We value your feedback to improve our textbook solutions.