Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A ball moves in the direction of the arrow labelled cin Figure 2.53. The ball is struck by a stick that briefly exerts a force on the ball in the direction of the arrow labellede. Which arrow best describes the direction of Δp, the change in the ball's momentum?

Short Answer

Expert verified

As a result, the right direction of the ball's momentum change ise.

Step by step solution

01

Action of force applied perpendicularly on a moving object

When a body moves in a specific direction at a specific velocity and an external force acts on it in a perpendicular direction to its motion, the body's speed remains constant but its direction of motion changes.

02

Represent the situation diagramatically

  • The body's motion is circular in this case, and the velocity vector is always tangential to the circular path on which it moves.

  • In this example, a force acted on the body in an inward direction, which is responsible for the body's circular trajectory.

  • The direction of velocity change is the same as the direction of momentum change.

  • The force applied by the stick and the ball's initial velocity are depicted in the diagram below.

03

Arrow describing the change in ball’s momentum

- The ball moves in the direction of C, whereas the force moves in the direction of e.

- As a result, the direction of acceleration is along e, and the change in velocity direction is also along e.

- The direction of change in velocity is the same as the direction of change in momentum, as is well known. As a result, momentum will flow in the direction of e.

- As a result, the right direction of the ball's momentum change isrole="math" localid="1657712640062" e.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A thin diverging lens of focal length 25cm is placed 18cm to the right of a point source of blue light on the axis of the lens. Where is the image of the source? Is it a real or a virtual image? If you placed a sheet of paper at the location of the image, what would you see on the paper?

(a)On a piece of graph paper, draw the vector g=<4,7,0>m. Put the tail of the vector at the origin.

(b)Calculate the magnitude ofg.

(c)Calculateg^, the unit vector pointing in the direction ofg.

(d)On the graph, drawg. Put the tail of the vector at <1,0,0>so you can compareg^andg.

(e)Calculate the product of the magnitudegtimes the unit vectorg^,(g)(g^).

A tennis ball has a mass of 0.057kg.A professional tennis player hits the ball hard enough to give it a speed of 50 m/s (about 120 mi/h). The ball hits a wall and bounces back with almost the same speed (50m/s). As indicated in Figure 2.55 , high-speed photography shows that the ball is crushed 2 cm (0.02 m) at the instant when its speed is moment0arily zero, before rebounding.

Making the very rough approximation that the large force that the wall exerts on the ball is approximately constant during contact, determine the approximate magnitude of this force. Hint: Think about the approximate amount of time it takes for the ball to come momentarily to rest. (For comparison note that the gravitational force on the ball is quite small, only about (0.057 kg) (9.8 N/kg) 0.6 N. A force of5N is approximately the same as a force of one pound.)

(1) A spring of stiffness 13 N/m, with relaxed length 20 cm, stands vertically on a table as shown in Figure 2.36. Use the usual coordinate system, with +x to the right, +y up, and +z out of the page, towards you. (a) When the spring is compressed to a length of 13 cm, what is the unit vector L^? (b) When the spring is stretched to a length of 24 cm, what is the unit vector L^? (2) A different spring of stiffness 95 N/m, and with relaxed length 15 cm, stands vertically on a table, as shown in Figure 2.36. With your hand you push straight down on the spring until your hand is only 11 cm above the table. Find (a) the vector L^, (b) the magnitude of L^, (c) the unit vector role="math" localid="1668490124469" L^, (d) the stretch s, (e) the forcerole="math" localid="1668490004012" F exerted on your hand by the spring.

A ball of mass 0.4 kg flies through the air at low speed, so that air resistance is negligible.

(a) What is the net force acting on the ball while it is in motion?

(b) Which components of the ball's momentum will be changed by this force?

(c) What happens to the x component of the ball's momentum during its flight?

(d) What happens to the y component of the ball's momentum during its flight?

(e) What happens to the z component of the ball's momentum during its flight?

(f) In this situation, why is it legitimate to use the expression for average y component of velocity, vavg,x=(vix+vfx)2, to update the y component of position?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free