Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: The following questions refer to the circuit shown in Figure 18.114, consisting of two flashlight batteries and two Nichrome wires of different lengths and different thicknesses as shown (corresponding roughly to your own thick and thin Nichrome wires).

The thin wire is 50 cm long, and its diameter is 0.25 mm. The thick wire is 15 cm long, and its diameter is 0.35 mm. (a) The emf of each flashlight battery is 1.5 V. Determine the steady-state electric field inside each Nichrome wire. Remember that in the steady state you must satisfy both the current node rule and energy conservation. These two principles give you two equations for the two unknown fields. (b) The electron mobility

in room-temperature Nichrome is about 7×10-5(ms)(Ns). Show that it takes an electron 36 min to drift through the two Nichrome wires from location B to location A. (c) On the other hand, about how long did it take to establish the steady state when the circuit was first assembled? Give a very approximate numerical answer, not a precise one. (d) There are about 9×1028mobile electrons per cubic meter in Nichrome. How many electrons cross the junction between the two wires every second?

Short Answer

Expert verified

The number of electrons crossing the junction is 1.72×1018electronss.

Step by step solution

01

Write the given data

The thin wire is 50 cm long and the diameter is 0.25 mm.

The flashlight battery is1.5 V.

02

Determine the formula

Consider the equation for the current in the wire is derived as:

i=nAuE

03

Determine the number of electrons that cross the junction as:

Solve for the number of electrons that are crossing the junction as:

i=nAv=9×1028electronsm30.04908×1063.9×104ms=1.72×1028electronss

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A playground ride consists of a disk of mass M=43kgand radius R=1.7mmounted on a low-friction axle (Figure 11.94). A child of mass m=25kgruns at speed v=2.3m/son a line tangential to the disk and jumps onto the outer edge of the disk.

(a.) If the disk was initially at rest, now how fast is it rotating? (b) What is the change in the kinetic energy of the child plus the disk? (c) where has most of this kinetic energy gone? (d) Calculate the change in linear momentum of the system consisting of the child plus the disk (but not including the axle), from just before to just after impact. What caused this change in the linear momentum? (e) The child on the disk walks inward on the disk and ends up standing at a new location a distance from the axle. Now what is the angular speed? (f) What is the change in the kinetic energy of the child plus the disk, from the beginning to the end of the walk on the disk? (g) What was the source of this increased kinetic energy?

Two circular plates of radius 0.12 mare separated by an air gap of 1.5 mm. The plates carry charge+Qand-Qwhere Q=3.6×10-8C. (a) What is the magnitude of the electric field in the gap? (b) What is the potential difference across the gap? (c) What is the capacitance of this capacitor?

A truck driver slams on the brakes and the momentum of the truck changes from<65,000,0,0>kg.m/sto<26,000,0,0>kg.m/s
in4.1sdue to a constant force of the road on the wheels of the truck. As a vector, write the net force exerted on the truck by the surroundings.

In gold at room temperature, the mobility of mobile electrons is about 4.3×10-3(msVm), and there are about 5.9×1028mobile electrons per cubic meter. Calculate the conductivity of gold, including correct units.

On a straight road with the +x axis chosen to point in the direction of motion, you drive for 3 h at a constant 30 mi/h, then in a few seconds you speed up to 60mi/h and drive at this speed for 1 h.

(a) What was the x component of average velocity for the 4 h period, using the fundamental definition. Of average velocity, which is the displacement divided by the time interval?

(b) Suppose that instead you use the equation vavg,x=(vix+vfx)2. What do you calculate for the x component of average velocity?

(c) Why does the equation used in part (b) give the wrong answer?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free