Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You hang a 10 kg mass from a copper wire, and the wire stretches by .

(a)If you suspend the same mass from two copper wires, identical to the original wire, what happens?

(b)If you suspend the same mass from a copper wire with half the cross-sectional area but the same length as the original wire, what happens?

(c)If you suspend the same mass from a copper wire with the same cross-sectional area but twice the length of the original wire, what happens?

Short Answer

Expert verified

(a) The stretch in the wire when two wires are used instead of one is 4 mm.

(b) The stretch in the wire when the cross-sectional area is halved is 16 mm.

(b) The stretch in the wire when the initial length is doubled is 16 mm.

Step by step solution

01

Given data

A 10 kg mass is hung from a copper wire, and the wire stretches by 8 mm.

02

Change in length of the wire

The change in length of a wire of initial length Land cross-sectional area Awhen forceFis applied to it can be expressed as,

L=FLAY (I)

Here Lis Young's modulus of the material of the wire.

03

Determining the change in length when two wires are used instead of one

a)

When two wires are used, the cross-sectional area doubles. From equation (I), the new change in length can be calculated as,

L=FL2AY=12FLAY=12×8mm=4mm

Thus, the new change in length is 4 mm.

04

Determining the change in length when the cross-sectional area is halved

b)

From equation (I), the new change in length when the cross-sectional area is halved can be calculated as,

L=FLA2Y=2FLAY=2×8mm=16mm

Thus, the new change in length is 16 mm.

05

Determining the change in length when the initial length is doubled

c)

From equation (I), the new change in length when the initial length is doubled can be calculated as,

L=F2LAY=2FLAY=2×8mm=16mm

Thus, the new change in length is 16 mm.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A spacecraft traveling at a velocity of <-20,-90,40>m/sis observed to be at a location <200,300,-500>relative to an origin located on a nearby asteroid. At a later time the spacecraft is at location <-380,-2310,660>m.

(a)How long did it take the spacecraft to travel between these locations?

(b)How far did the spacecraft travel?

(c)What is the speed of the spacecraft?

(d)What is the unit vector in the direction of the spacecraft’s velocity?

(1)You push on a spring whose stiffness is 11 N/m, compressing it until it is 2.5 cm shorter than its relaxed length. What is the magnitude of the force the spring now exerts on your hand?

(2) A different spring is 0.17 m long when it is relaxed.

(a) When a force of magnitude 250 N is applied, the spring becomes 0.24 m long. What is the stiffness of this spring?

(b) This spring is compressed so that length is 0.15 m. What magnitude of the force is required to do this?

In Figure 19.76 the resistance R1 is 10Ω, R2is5Ω , and R3 is 20Ω. If this combination of resistors were to be replaced by a single resistor with an equivalent resistance, what should that resistance be?

(1) Two external forces,(40,70,0)Nand (20,10,0)N, act on a system. What is the net force acting on the system? (2) A hockey puck initially has momentum (0,2,0)kg.m/s. It slides along the ice, gradually slowing down, until it comes to a stop. (a) What was the impulse applied by the ice and the air to the hockey puck? (b) It took 3 seconds for the puck to come to a stop. During this time interval, what was the net force on the puck by the ice and the air (assuming that this force was constant)?

Because the change of the momentum is equal to the net impulse, the relationship of momentum itself to the net force is somewhat indirect, as can be seen in this question. An object is initially moving in the + x direction with a magnitude of momentum p, with a net force of magnitude F acting on the object in either the + x or - x direction. After a very short time, say whether the magnitude of the momentum increases, decreases, or stays the same in each of the following situations:

a) the net force acts in the + x direction and F is constant.

b) the net force acts in the + x direction and F is increasing.

c) the net force acts in the + x direction and F is decreasing.

d) the net force acts in the - x direction and F is constant.

e) the net force acts in the - x direction and F is increasing.

f) the net force acts in the - x direction and F is decreasing.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free