Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The windshield of a speeding car hits a hovering insect. Consider the time interval from just before the car hits the insect to just after the impact. (a) For which choice of system is the change of momentum zero? (b) Is the magnitude of the change of momentum of the bug bigger than, the same as, or smaller than that of the car? (c) Is the magnitude of the change of velocity of the bug bigger than, the same as, or smaller than that of the car?

Short Answer

Expert verified

a) Thecar and insect system is the change of momentum zero.

b) The magnitude of thechange of momentum of the bug is the same as the car.

c) The magnitude of thechange of velocity of the bug is bigger than that of the car

Step by step solution

01

Significance of Conservation of momentum

The quantity termed momentum, which describes motion, never changes in an isolated collection of objects, according to a general law of physics.

02

Applying the law of conservation of momentum

(a)

Here, a car and hovering insect is a system where the change of momentum is zero.

Pc=-Pi...................................(1)

Where Pcis the change of momentum of a car, Piis the change of momentum of an insect.

03

Checking change of momentum of car and bug

(b)

As per the law of conservation of momentum, the change of momentum of the car is the same as the change of momentum of the bug, as shown in equation (1).

04

Checking magnitude of change of velocity of car and bug 

(c)

The equation of change momentum is given as,

P=mv2-v1P=mv

As

role="math" localid="1653981898191" MmWegetvv

Where M is the mass of the car, m is the mass of the bug, V is the speed of the car, and v is the speed of the bug.

As per the law of conservation of momentum, the magnitude of the change of velocity of the bug is going to be bigger because the bug is going to have a much smaller mass as compared to a car

Thus, the magnitude of the change of velocity of the bug is bigger than that of the car.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A bullet traveling horizontally at a very high speed embeds itself in a wooden block that is sitting at rest on a very slippery sheet of ice. You want to find the speed of the block just after the bullet embeds itself in the block. (a) What should you choose as the system to analyze? (b) Which of the following statements is true? (1) After the collision, the speed of the block with the bullet stuck in it is the same as the speed of the bullet before the collision. (2) The momentum of the block with the bullet stuck in it is the same as the momentum of the bullet before the collision. (3) The initial momentum of the bullet is greater than the momentum of the block with the bullet stuck in it.

When they are far apart, the momentum of a proton is (3.4×10-21,0,0)kg.m/sas it approaches another proton that is initially at rest. The two protons repel each other electrically, without coming close enough to touch. When they are once again far apart, one of the protons now has momentum(2.4×10-21,1.55×10-21,0)kg.m/s. At that instant, what is the momentum of the other proton?

Two thin hollow plastic spheres, about the size of a ping-pong ball with masses (m1=m2=2×10-3kg), have been rubbed with wool. Sphere 1 has a charge of q1=-2×10-9Cand is at location (0.50,-0.20,0). Sphere 2 has a charge of q2=-4×10-9Cand is atlocation (-0.40,0.40,0). It will be useful to draw a diagram of the situation, including the relevant vectors.

a) What is the relative position vector r pointing from q1 to q2? b) What is the distance between q1 and q2? c) What is the unit vector r^in the direction of r? d) What is the magnitude of the gravitational force exerted on q2 by q1? e) What is the (vector) gravitational force exerted on q2 by q1? f) What is the magnitude of the electric force exerted on q2 by q1? g) What is the (vector) electric force exerted on q2 by q1? h) What is the ratio of the magnitude of the electric force to the magnitude of the gravitational force? i) if the two masses were four times further away (that is, if the distance between the masses were 4r), what would be the ratio of the magnitude of the electric force to the magnitude of the gravitational force now?

Astar exerts a gravitational force of magnitude 4×1025Non a planet. (a) What is the magnitude of the gravitational force that the planet exerts on the star? (b) If the mass of the planet were twice as large, what would be the magnitude of the gravitational force on the planet? (c)If the distance between the star and planet (with their original masses) were three times larger, what would be the magnitude of this force?

Two copies of this textbook are standing right next to each other on a bookshelf. Make a rough estimate of the magnitude of the gravitational force that the books exert on each other. Explicitly list all the quantities that you had to estimate, and all simplifications and approximations you had to make to do this calculation. Compare your result to the gravitational force on the book by the Earth.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free